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1.  Introduction  

Some species of Pseudomonas including P. aeruginosa,P. fluorescens,and P. putidaare relevant in bioremediation 

of polluted environments, control of fungal pathogens of plants, and production of certain substances for domestic 

and industrial application.P. aeruginosa is able to produce bio-active substances such as biosurfactants (Mukherjee 

& Das, 2010; Bustamante et al., 2012), and can degrade various organic substances including hydrocarbons 

(Ningthoujam&Shovarani, 2008; Singh & Walker, 2006; Ikhimiukor&Nneji, 2013); making it useful in some 

industries and in bioremediation of polluted environments.P. fluorescensis able to degrade various pollutants 
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Abstract: Commercially available medium for selective isolation of Pseudomonas are relatively expensive. 

Incorporation of chloramphenicol into nutrient agarhas been used in the selective isolation of 

Pseudomonasfluorescens. The aim of this study was to apply optimization in modification of nutrient-

chloramphenicol agar medium (NCAM) so as to optimize it for selective isolation of Pseudomonas species. 

Water sample determined to contain fluorescent greenish-pigment producing bacteria (FGPB) was used for the 

optimization study. Medium component selected for the optimization process were pH, NaCl concentration (NC), 

and chloramphenicol concentration (CC), with value ranges of 7.0 – 8.2, 0.5 – 1.0 %, and 40 – 60 μg/ml, 

respectively. Fifteen media variations were derived from combination of these ranges using Box-Behnken design 

matrix, and were used in culturing the water sample for isolation of FGPB. Relationship between obtained 

proportions of bacterial populations that are FGPB and chosen media components were calculated using 

polynomial equation for three factors design. Prediction profiles derived from the equation showed that the 

highest proportion of bacterial populations that are FGPB was achievable at pH, NC, and CC combination values 

of 7.0, 0.2 %, and 60 μg/ml, respectively. NCAM with this optimized combination increased the efficiency of 

selectively isolating FGPB from the water sample from 0.008 to 0.011 %. Physicochemical/biochemical testing 

showed that the FGPBisolates were Pseudomonas fluorescens. It is concluded that NCAM with pH 7.0, NaCl 

concentration of 0.2 %, and chloramphenicol concentration of 60 μg/ml can be used for selective isolation of 

Pseudomonas fluorescens with optimum efficiency.   
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including herbicides, hydrocarbons, and phenol (Garbiet al., 2006; Mahiuddinet al., 2012; Monekeet al., 

2010;Vasudevanet al., 2007), and produce active compounds that portray antagonistic activity against some 

pathogens of plants  

(Anbuselviet al., 2010; Haas et al., 1991). Thus P. fluorescensis a potential candidate in bioremediation of polluted 

environment, and in control of pathogens of plants. P. fluorescensalso produce biosurfactants and antibiotics 

including Mupirocin, Pyrrolnitrin, and Pyoluteorin(Abouseoudet al., 2007; Sarniguetet al., 1995; Gaoet al., 2014). 

P. putidahas the ability to degrade many aliphatic and aromatic hydrocarbons, toxic pollutants such as styrene, 

herbicides, toxins, and organic solvents (Marqués& Ramos, 1993; Otenioet al., 2005; Tan et al., 2015), and is 

therefore also relevant in bioremediation of polluted environments.   

An attribute of the principal species of Pseudomonas, which include P. aeruginosa, P. fluorescens, P. putida, andP. 

syringae, is the production of diffusible greenish pigmentsin culture media containing certain substances 

(Boopathi&Rao, 1999; Daly et al., 1984; Scaleset al., 2014; Stanieret al., 1977). The pigments usually fluoresce 

under ultraviolet (UV) light. Therefore, colonies of the principal species of Pseudomonas growing in the midst of 

colonies of other bacteria on translucent agar plate can be detected in daylight and in the dark under UV light. 

Production of greenish pigment that fluoresces under UV light can thus be relied upon as a guide in the isolation 

of any of the principal species of Pseudomonas.  

Different culture media are available in the market for the isolation of greenish pigment producing Pseudomonas 

spp. They include cetrimide agar, King’s B medium, Pseudomonas agar P, Pseudomonas agar F, asparagine broth 

enriched with K2HPO4 and MgSO4.7H2O, and Pseudomonas CN selective agar (Al-Hinaiet al., 2010; Laineet al, 

2009; Oliveira et al., 2008; Peekateet al., 2018). These media are relatively expensive and not readily available to 

researchers working in underfunded research institutions.   

A substance which appears to instigate pigment production in Pseudomonas is the antibiotic chloramphenicol 

(Peekate& Abu, 2015; Peekate& Abu, 2017a).P. aeruginosa, P. fluorescens, and some strains of P. putidaare 

resistant to some antibiotics including chloramphenicol; and are able to grow in the presence of chloramphenicol, 

nalidixic acid, and tetracycline(Blanco et al., 2016; Darak&Barde, 2015; Fernándezet al., 2012; Livermore, 2002; 

Morita et al., 2014; Peekate& Abu, 2015; Strateva&Yordanov, 2009). Incorporation of chloramphenicol into 

nutrient agar, a relatively inexpensive general purpose culture medium, has been used in the selective isolation of 

P. fluorescens (Peekate& Abu, 2017a). There is however a need to elucidate the precise chloramphenicol 

concentration, and values of other growth medium parameters so as to optimize such medium for selective 

isolation of Pseudomonas species. Therefore, the aim of this research was to apply optimization models in 

modification of nutrient-chloramphenicol agar medium so as to optimize it for the selective isolation of 

Pseudomonas species.   

2.  Materials and Methods  

2.1  Sample collection and analysis  

Water sample (500 ml) was collected from a temporary stagnant pool of water near the Microbiology laboratory 

in the Rivers State University, Port Harcourt, Nigeria. Some quantity of the sample was subjected to analysis for 

bacterial population, while the remaining was stored at 4 °C in a refrigerator for subsequent use in optimization 

modelling. Bacterial population analyzed for was total heterotrophic bacteria (THB) and fluorescent greenish 

pigment producing Pseudomonas species (FGPs). Determination of THB and FGPs populations were achieved 

through 10-fold serial dilution and inoculation on plates of nutrient agar and nutrient agar incorporated with 

chloramphenicol (50 μg/ml), respectively. Inoculated plates were incubated at ambient temperatures (27 – 32 °C) 

for 2 days. After incubation, colonies on the nutrient agar plates were counted and used to calculate the THB 
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population. Greenish-pigment producing colonies on the plates of nutrient agar incorporated with 

chloramphenicol, which fluoresced under UV light in the dark, were suspected as FGPs and their counts used to 

calculate the FGPs population. UV illumination was provided using a handheld UV torch in a dark room.  

2.2  Medium component selected for the optimization process  

Medium components chosen for the optimization process include pH and NaCl concentration, in addition to 

chloramphenicol concentration which served as the pigment-production instigation agent. The value ranges of the 

medium parameters chosen for the optimization process, based on Box-Behnken design are presented in Table 

1(Design adapted from Zhang &Dequan, 2013). Different combinations of the ranges of the medium parameters 

using the Box-Behnken experimental design matrix are presented in Table 2(Design adapted from Kumar et al., 

2015).  

Table 1:Value range selection ofmediumparameters for the optimization experiment  

Medium parameters  Coded Levels   

-1  0  +1  

.pH  7.0   7.6   8.2   

NC (%)  0.5  0.75  1.0  

CC (μg/ml)   40  50  60  

NC: NaCl concentration, CC: chloramphenicol concentration.  

Table 2: Combination of ranges of medium parameters for experimentation  

 
1 - 1  (7.0)  - 1 (0.5)    0 (50)  

2 - 1  (7.0)  + 1 (1.0)    0 (50)  

3 + 1  (8.2)  - 1 (0.5)    0 (50)  

4 + 1  (8.2)  + 1 (1.0)    0 (50)  

5 - 1  (7.0)    0 (0.75)  - 1 (40)  

6 - 1   (7.0)    0 (0.75)  + 1 (60)  

7 + 1  (8.2)    0 (0.75)  - 1 (40)  

8 + 1  (8.2)    0 (0.75)  + 1 (60)  

9 0  (7.6)  - 1 (0.5)  - 1 (40)  

10 0  (7.6)  - 1 (0.5)  + 1 (60)  

11 0  (7.6)  + 1 (1.0)  - 1 (40)  

12 0  (7.6)  + 1 (1.0)  + 1 (60)  

13 0  (7.6)    0 (0.75)    0 (50)  

14 0  (7.6)    0 (0.75)    0 (50)  

15 0  (7.6)    0 (0.75)    0 (50)  

 

CN: Combination number, NC: NaCl concentration (%), CC: chloramphenicol concentration (μg/ml).  

CN   
.pH   NC    CC    

X ( 1 )   X ( 2 )   X ( 3 )   
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2.3  Agar medium preparation for the combination numbers  

Chloramphenicol stock solution of 1000 μg/ml was prepared by transferring 0.2g of powdered chloramphenicol 

into sterile 200 ml sterile distilled water in a sterile conical flask. The volumes of the chloramphenicol stock 

solution to be added to the different medium of the various combination numbers (Table 2) so as to achieved the 

specified chloramphenicol concentrations were calculated using equation 1 (Eq. 1). The equation is derived from 

the equation M1V2 = M2V2 (Manillaet al., 2001).  

1000 µg/ml × VCHx = CCx × 75 ml …  …  …  …  …  …  … (Eq. 1)  

Where VCHxis the volume of the chloramphenicol stock solution required for combination number x, CCx the 

chloramphenicol concentration specified for combination numberx, x is any of the combination numbers, and 75 

ml is the targeted agar medium volume. Therefore, the volumes of the chloramphenicol stock solution required 

for combination numbers specified for 40, 50, and 60 µg/ml chloramphenicol concentrations were calculated to 

be 3, 3.75, and 4.5 ml respectively.  

Four agar plates of modified nutrient agar medium were prepared for each combination number. Agar medium 

volume of 75 ml was targeted for each combination number based on the observation that about 18 ml medium 

is required to completely cover the bottom plate of the size of Petri dish used (18 ml per plate × 4 plates = 72 ml). 

For each combination number, 2.1 g nutrient agar which is required for preparation of 75 ml of nutrient agar 

medium was added to 60 ml distilled water in a beaker. Next, NaCl was added. However, NaCl was not added to 

the medium for combination numbers specified for 0.5 % NaClbecause the Nutrient agar (Himedia, India) used 

contained 0.5% NaCl. The quantities of NaCl added to agar media for the other combination numbers were 

worked out using equation 2 (Eq. 2).  

QNCx  ml …  …  …  …  …  …  …  … (Eq. 2)  

Where QNCx is the quantity of NaCl to be added to medium for combination number x,NCx is the specified NaCl 

concentration for combination number x, andx is any of the following combination numbers: 2, 4, 5 – 8, and 11 – 

15.   

Next the pH of the resulting media for the combination numbers were adjusted to the specified pH using 0.4 M 

NaOH and 0.01 M H2SO4. The media were then transferred into  

100ml measuring cylinders, and distilled water was added so as to achieve media volumes of 72, 71.25, and 70.5 

ml for combination numbers specified for 40, 50, and 60 µg/ml chloramphenicol concentrations respectively. The 

media were transferred into appropriately labelled 150 ml conical flask, and sterilized in an Autoclave at 121 °C 

for 15 minutes. After sterilization, the flasks were allowed to cool to about 50 °C then the calculated volumes of 

the chloramphenicol stock solution to be added to the agar medium of the different combination numbers were 

added. After addition of the stock solution, the media were poured into appropriately labelled sterile Petri plates. 

The agar media were allowed to harden, and then dried in a hot air oven set at 50 °C.   

2.4  Optimization experiment  

The water sample collected earlier was used for the optimization experiment. About 0.1 ml of the sample and its 

10-1 dilution were spread plated separately on the agar medium plates for the different combination numbers in 

duplicates. The plates were incubated at ambient temperatures (27 – 32 °C) for 2 days. After incubation, ensuing 

colonies including greenish pigment producing colonies were counted. Greenish-pigment producing colonies that 

fluoresced under UV light in the dark were also counted. The total colonial counts and counts of greenish-pigment 

producing colonies that fluoresced under UV light were used to obtain the proportions of THB suspected to be 
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FGPs. The proportions for the different combination numbers were then fitted into a regression model 

corresponding to the generalized polynomial equation (Eq. 3) for three factors design (Kumar et al., 2015).  

 …  …  …  …  …  …  …  …  … (Eq. 3)  

Where Y is the predicted response; X1, X2, and X3 represent the values for the three medium parameters(pH, NaCl 

concentration, and chloramphenicol concentration); β0 is the value of fitted response at the center point of the 

design; β1, β2, and β3 are the linear coefficients; β1,2, β1,3, and β2,3 are the interaction coefficients; and β1,1, 

β2,2, and β3,3 are the quadratic coefficients.  

Matrices were applied, with the aid of Microsoft excel®, in resolving the regression model generated from Eq. 3. 

The polynomial equation derived from the resolved regression model was used in generating prediction profiles. 

From the prediction profiles the combination of values of the medium parameters that will lead to the highest 

proportion of THB that are FGPswas determined and used in preparation of the optimized agar medium.  

2.5  Statistical analysis of generated polynomial equation   

The analysis of variance (ANOVA) was used in determining if one or more of the coefficients in the generated 

polynomial equation is/are significant; therefore, indicating the probability of a relationship existing between the 

responses and one or more of the medium parameters that were modified.   

2.6  Enumeration of bacterial population using the optimized agar medium  

Agar plates of the optimized medium were used in enumeration of bacterial population in the water sample 

collected from the stagnant pool near the Microbiology laboratory. The result obtained was compared with results 

obtained using un-optimized medium.  

2.7  Identification of fluorescent greenish-pigment-producing bacteria  

Some fluorescent greenish-pigment-producing colonies on culture plates of the optimized medium were isolated 

unto sterile nutrient agar plates, and their stock cultures prepared. The isolates were subjected to Gram staining 

& microscopic examination, and the following physicochemical/biochemical tests as described in Peekate (2022): 

catalase test, oxidase test, motility test, citrate utilization test, indole production test, Methyl red tests, Vogues 

Proskauer test, haemolysis test, casein hydrolysis test, lecithinase production test, lipase production test, and 

fermentation tests using glucose, lactose, mannitol, xylose, and glycerol.   

3.  Results  

3.1  Bacterial populations in collected water sample  

The populations of total heterotrophic bacteria (THB) and suspected fluorescent greenish pigment-producing 

Pseudomonas species (FGPs) in the collected water sample were 2.2±0.6 × 106 and 1.7±0.3 × 102CFU/ml 

respectively. This culminates into a proportion of 0.008 % THB that are suspected FGPs.  

3.2 Bacterial populationsas assessed using media of different combination numbers The bacterial populations 

in the water sample as assessed using media of the different combination numbers are presented in Table 3. In the 

Table, it can be observed that the proportions of THB that are suspected to be FGPs in the water sample as assessed 

using media of the different combination numbers range from 0 – 0.0068 %.  

3.3  Polynomial equation generated from the optimization experiment  

Fitting of the proportions of THB that were suspected to be FGPs as assessed using media of the different 

combination numbers and the value ranges of the chosen medium parameters into the regression model (Eq. 3) is 

presented in Table 4. Resolving the values in Table 4 using the matrix equation  = (XTX)-1XTY (Draper & Smith, 
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1998), the coefficients in Eq. 3 for the combinations of value 

ranges of  

the chosen parameters were deduced to be 0.1802, - 0.0425, - 0.0776, 0.0008, 0.0113, - 0.00004, - 0.0002, 0.0023, 

- 0.0018, and - 0.000004, respectively. Therefore, the polynomial equation from the resolved model is as follows:  

  …  …  … (Eq. 4)  

Eq. 4 was used in generating prediction profiles which were used in determining the optimized combination of 

pH, NaCl concentration, and Chloramphenicol concentration for instigating pigment production in FGPs.  

  

3.4  Statistical significance of the generated polynomial equation   

A summary of the ANOVA of the polynomial equation derived from the regression model is presented in Table 5. 

In the Table, it can be seen that calculated F statistics is greater than tabulated F statistics. This indicates that at 

least one of the coefficients (  

) Of the derived polynomial equation is significant. This  

means that a regression model exists between proportion of THB that are FGPs and at least one of pH, NaCl 

concentration, and chloramphenicol concentration.   

Table 3: Bacterial populations as assessed using media of the different combination numbers  

CN  THB  CRB  FGB  PTF  

  CFU/ml  CFU/ml  CFU/ml   (%)  

1  2.2±0.6 × 106  1.75±0.08 × 103  1.50±0.35 × 102  0.0068  

2  2.2±0.6 × 106  8.75±0.74 × 103  0  0  

3  2.2±0.6 × 106  3.35±0.32 × 103  0  0  

4  2.2±0.6 × 106  3.75±0.25 × 103  0  0  

5  2.2±0.6 × 106  2.19±0.18 × 104  5.0±1.4 × 10  0.0023  

6  2.2±0.6 × 106  2.00±0.13 × 102  2.0±0.7 × 10  0.0009  

7  2.2±0.6 × 106  1.66±0.07 × 104  5.0±0.7 × 10  0.0023  

8  2.2±0.6 × 106  6.50±0.28 × 102  0  0  

9  2.2±0.6 × 106  1.23±0.06 × 104  0  0  

10  2.2±0.6 × 106  1.98±0.08 × 102  1.5±0.4 × 10  0.0007  

11  2.2±0.6 × 106  3.35±0.32 × 104  2.5±0.4 × 10  0.0011  

12  2.2±0.6 × 106  1.40±0.03 × 102  0  0  

13  2.2±0.6 × 106  4.30±0.35 × 103  0  0  

14  2.2±0.6 × 106  3.45±0.39 × 103  5.0±0.7 × 10  0.0023  
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15  2.2±0.6 × 106  2.00±0.35 × 103  1.5±0.4 × 10  0.0007  

CN: Combination number, THB: Population of total heterotrophic bacteria, CRB: Population of chloramphenicol 

resistant bacteria, FGB: Population of fluorescent greenish-pigment producing bacteria, PTF: proportion of THB 

suspected to be fluorescent greenish-pigment producing Pseudomonas species (  × 100)    

Table 4: Responses from combinations of value ranges of chosen medium parameters  

   .pH  NC  CC                    PTF (%)  

N  X1  X2  X3  X1 X2  X1 X3  X2 X3  X12  X22  X32     

 [X]  
  

        Y  

1  7  0.5  50  3.5  350  25  49  0.25  2500  0.0068  

1  7  1  50  7  350  50  49  1  2500  0  

1  8.2  0.5  50  4.1  410  25  67.24  0.25  2500  0  

1  8.2  1  50  8.2  410  50  67.24  1  2500  0  

1  7  0.75  40  5.25  280  30  49  0.5625  1600  0.0023  

1  7  0.75  60  5.25  420  45  49  0.5625  3600  0.0009  

1  8.2  0.75  40  6.15  328  30  67.24  0.5625  1600  0.0023  

1  8.2  0.75  60  6.15  492  45  67.24  0.5625  3600  0  

1  7.6  0.5  40  3.8  304  20  57.76  0.25  1600  0  

1  7.6  0.5  60  3.8  456  30  57.76  0.25  3600  0.0007  

1  7.6  1  40  7.6  304  40  57.76  1  1600  0.0011  

1  7.6  1  60  7.6  456  60  57.76  1  3600  0  

1  7.6  0.75  50  5.7  380  37.5  57.76  0.5625  2500  0  

1  7.6  0.75  50  5.7  380  37.5  57.76  0.5625  2500  0.0023  

1  7.6  0.75  50  5.7  380  37.5  57.76  0.5625  2500  0.0007  

[X]: design matrix of the polynomial model, Y: responses of the model, PTF (Y): proportion of THB suspected to 

be fluorescent greenish-pigment producing Pseudomonas species.  

Table 5: Summary of the ANOVA of the derived polynomial equation  

SOS  

Regression ≡ k 

 3  0.0000306 

Error ≡ n–(k+1)  11  0.000015  0.0000014        

Total  14            

 

SOV: Source of variation, DOF: Degree of freedom, SOS: Sum of squares, MS: Mean squares, Fc: calculated F 

statistic = MS(Regression)/MS(Error), Ft: tabulated F statistic.  

3.5  Prediction profiles and optimized combination  

The prediction profiles generated from Eq. 4 for chloramphenicol concentrations of 20 – 100 μg/ml and NaCl 

concentrations of 0.2 – 1.0 %, at pH 7.0, 7.6, and 8.2 is presented in Table 6. From the prediction profiles (Table 

6), it can be seen that the highest proportion (0.01 %) of THB that are FGPs can be achievable with the use of 

SOV   DOF   MS   F c   F t   α   

  0.0000102   7.29   2.66   0.1   



    
 

  31 | P a g e   
 

 https://loganjournals.online           Volume 11 Issue 2     

Multidisciplinary Journal of Advanced Materials, Physics and Bio Research. 

modified nutrient agar medium having the following combination: pH – 7.0, NaCl concentration – 0.2 %, 

chloramphenicol concentration – 60 μg/ml.  

Table 6: Prediction profiles for % of THB producing fluorescent greenish pigment from combined concentrations 

of chloramphenicol (CC) and NaCl  

 

X1 (pH)  X2 (NaCl)  X3 (CC)  

  20  40  60  80  100  

  

 0.2  0.0036  0.0084  0.0100  0.0084  0.0036  

 0.4  0.0029  0.0069  0.0077  0.0053  -0.0003  

7.0  0.6  0.0021  0.0053  0.0053  0.0021  -0.0044  

 0.8  0.0010  0.0034  0.0026  -0.0014  -0.0086  

 1.0  -0.0001  0.0015  -0.0001  -0.0049  -0.0129  

     

 0.2  -0.0009  0.0035  0.0046  0.0025  -0.0028  

 0.4  -0.0002  0.0033  0.0036  0.0008  -0.0053  

7.6  0.6  0.0003  0.0030  0.0025  -0.0012  -0.0080  

 0.8  0.0006  0.0026  0.0013  -0.0032  -0.0109  

 1.0  0.0008  0.0020  -0.0001  -0.0054  -0.0139  

          

 0.2  -0.0037  0.0002  0.0008  -0.0018  -0.0075  

 0.4  -0.0017  0.0014  0.0012  -0.0022  -0.0087  

8.2  0.6  0.0002  0.0024  0.0015  -0.0027  -0.0101  

 0.8  0.0019  0.0033  0.0016  -0.0034  -0.0116  

 1.0  0.0035  0.0041  0.0015  -0.0042  -0.0132  

 
3.6 Bacterial populations in the water sample as assessed using optimized agar medium  

Populations of THB in the water sample from the stagnant pool as assessed using nutrient agar, and fluorescent 

greenish pigment producing bacteria as assessed using un-optimized nutrient-chloramphenicol agar and the 

optimized nutrient-chloramphenicol agar are presented in Table 7. In the Table, it can be seen that the proportion 

(0.011 %) of THB that are fluorescent greenish-pigment producing bacteria as obtained using the optimized 

medium is greater than the proportion (0.008 %) of THB that are fluorescent greenish-pigment producing bacteria 

as obtained using the un-optimized medium.  

Table 7: Bacterial populations in the water sample as assessed using nutrient agar, unoptimized and optimized 

nutrient-chloramphenicol agar  

THB  FGP(U)  FGP(O)  U.PTF  O.PTF  

(CFU/ml)  (CFU/ml)  (CFU/ml)  (%)  (%)  

2.2±0.6 × 106  1.7±0.3 × 102  2.5±0.3 × 102  0.008  0.0114  
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THB: total heterotrophic bacteria, FGP(U): fluorescent greenish-pigment producing colonial count (FGPCC) 

obtained using un-optimized medium, FGP(O): FGPCC obtained using optimized medium, U.PFF: proportion of 

THB that are fluorescent greenish-pigment producing bacteria(PTFGB) as obtained using un-optimized medium, 

O.PFF: PTFGB as obtained using optimized medium.   

3.7  Identity of fluorescent greenish-pigment producing bacteria  

The isolated fluorescent greenish-pigment-producing bacteria were all Gram negative rods, and reacted alike to 

the tests used as follows: catalase positive, oxidase positive, positive motility, positive for citrate utilization, 

negative for indole production, Methyl red negative, Vogues-Proskauernegative, positive for beta-haemolysis, 

positive for casein hydrolysis, lecithinasepositive, lipase positive, acid production from glucose fermentation, 

negative for lactose fermentation, negative for mannitol fermentation,negative for xylose fermentation, and 

positive for glycerol fermentation. This results pattern is similar to the physicochemical/biochemical tests results 

of Pseudomonas fluorescens as cited in Peekate (2022). Therefore, all the isolated fluorescent greenish-pigment-

producing bacteria are suspected to be P. fluorescens.  

4.  Discussion  

Species of Pseudomonas are often required by researchers due to their importance in research and application. 

Media available for selective isolation of Pseudomonas are relatively expensive for researchers working in 

underfunded institutions. The need to modify readily available and relatively inexpensive medium for selective 

isolation of Pseudomonas thus arises. Selective isolation of Pseudomonas is made possible by the ability of some 

of its species to produce fluorescent greenish pigments in the presence of certain substances. Such substances 

include the antibiotic chloramphenicol (Peekate& Abu, 2015; Peekate& Abu, 2017a). Therefore, modification of 

nutrient agar, a relatively inexpensive medium, through addition of chloramphenicol presents a cost-effective 

means for selective isolation of Pseudomonas. However, such medium modification needs to be optimized for 

efficient selective isolation of the target organism, in this case Pseudomonas.    

In this study, application of optimization models revealed the pH value, NaCl concentration, and chloramphenicol 

concentration for compounding nutrient-chloramphenicol agar medium for optimum production of pigment by 

Pseudomonas fluorescens, thereby ensuring efficient selective isolation of the organism. In related studies 

(Biniarzet al., 2018; Kalaiarasi&Sunitha, 2009; Peekate& Abu, 2017b), application of optimization models have 

been shown to elucidate medium parameter values, medium components, and culture conditions for efficient 

production of certain substances including biosurfactants and proteins by Pseudomonas fluorescens.   

Selective isolation of fluorescent greenish-pigment producing Pseudomonas species (FGPs) was achieved in this 

study, with increase from 0.008 % for the un-optimized medium (nutrient-chloramphenicol agar medium with pH 

7.0, 0.5 % NaCl concentration, and 50 μg/ml chloramphenicol concentration) to 0.011 % efficiency for the 

optimized medium (nutrient-chloramphenicol agar medium with pH 7.0, 0.2 % NaCl concentration, and 60 μg/ml 

chloramphenicol concentration).In a previous study (Peekate& Abu, 2017a), FGPswas isolated using un-

optimized nutrient agar medium incorporated with 50μg/ml chloramphenicol with efficiency of about 0.0002 %. 

Application of optimization models therefore improved the modification of nutrient-chloramphenicol agar for 

efficient selective isolation of FGPs.  

5.  Conclusion  

Fluorescent greenish-pigment production by some species of Pseudomonas allows for its selective isolation. The 

production of the pigment can be enhanced in the presence of chloramphenicol. In this study, optimization models 

were applied in compounding nutrient chloramphenicol agar medium for efficient selective isolation of 

Pseudomonasfluorescens. Medium parameters selected for the optimization process were pH, NaCl 
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concentration, and chloramphenicol concentration. Values of these parameters that allowed for efficient selective 

isolation of Pseudomonasfluorescensas determined through optimization models were as follows:pH – 7.0, NaCl 

concentration – 0.2 %, chloramphenicol concentration – 60 μg/ml. Therefore, nutrient-chloramphenicol agar 

medium with pH 7.0, NaCl concentration of 0.2 %, and chloramphenicol concentration of 60 μg/mlcan be used 

for selective isolation of Pseudomonasfluorescens with optimum efficiency.   

Disclosure of conflict of interest There are no conflicts of interest.  
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