

 8 | P a g e

ISSN:

3067-266X

Impact Factor: 5.00

LOGAN

LOGAN JOURNAL OF COMPUTER

SCIENCE, ARTIFICIAL INTELLIGENCE,

AND ROBOTICS.
12(3) 2025 LJCSAIR

 https://loganjournals.online Volume 12 Issue 3

Taylor, E. O.

Department of Computer Science Rivers State University, Port Harcourt, Nigeria

DOI: https://doi.org/10.5281/zenodo.16752415

1. INTRODUCTION

The development of a real-time malware detection model utilizing Application Programming Interfaces

(APIs) call pattern using Deep Learning has become increasingly vital in the contemporary landscape of

cybersecurity. As malware continues to evolve in sophistication, traditional detection methods often fall

short, necessitating innovative approaches that leverage dynamic analysis techniques.

2. RELATED WORKS

Various studies have explored dynamic malware detection using different approaches, including machine

learning, deep learning, and data mining techniques. Pengbin et al. (2018) introduced EnDroid, a high-

precision dynamic analysis framework for Android malware detection. Eslam and Ivan (2020) leveraged

word embedding techniques to enhance Windows malware detection by analyzing contextual relationships

between API calls. Mario et al. (2019) proposed a malware detection and phylogeny analysis approach

using process mining. Nigat et al. (2021) integrated dynamic malware analysis, cyber threat intelligence,

machine learning, and data forensics to improve cybersecurity. Karbab et al. (2018) developed MalDozer,

an automated system utilizing deep learning for Android malware detection through API sequence

classification. McLaughlin et al. (2017) introduced a deep convolutional neural network (CNN) for Android

REAL-TIME DETECTION OF DYNAMIC MALWARE ATTACKS

THROUGH API CALL PATTERNS USING DEEP LEARNING

 NURSING EDUCATION

Abstract: With the rise in new malware threats in recent years, where data security and response time are

crucial for both businesses and home users, the threat is expected to worsen. Despite the widespread use of

anti-malware software, malware infections continue to grow rapidly. These attacks are often aimed at stealing

credentials, executing unauthorized commands, or installing additional malware. One concerning method is

dynamic malware attacks through API calls, where malicious code interacts with an application's APIs in real-

time. The attacker exploits vulnerabilities in the application or its infrastructure to access sensitive data or take

control of the system. To address the issue of dynamic malware attacks through API calls, this paper introduces

a technique for detecting and classifying such attacks.

Keywords: API Call Pattern, Real-Time, Malware

 9 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
malware detection. Shihang et al. (2021) proposed De-LADY, a dynamic feature-based obfuscation-

resilient malware detection system. Kim et al. (2017) developed a framework for detecting and classifying

malicious Android applications using automatic feature extraction. Vinayakumar et al. (2019) evaluated

machine learning and deep learning models for malware detection and classification across various datasets.

Finally, Souri and Hosseini (2018) provided a comprehensive survey of malware detection approaches

based on data mining techniques, highlighting advancements in the field.

3. SYSTEM DESIGN

System design is the process of designing the elements of a system such as the architecture, modules and

components, the different interfaces of those components and the data that goes through the system.

Architectural Design

The proposed system architecture comprises different components of the system. A detailed description of

the proposed system design can be seen in Figure 3.2.

Figure 3.2: Architecture of the Proposed System

The architecture in the provided image represents a Recurrent Neural Network (RNN)-based malware

detection system using dynamic malware features. The system starts with a database of dynamic malware

features collected from real-world malware samples. These features represent behaviors such as system

calls, API usage, file modifications, and network activities. The raw malware behavior data undergoes pre-

processing to remove noise, standardize formats, and extract relevant features. Important characteristics of

malware behavior are extracted for use in the neural network model. This step helps reduce dimensionality

and improves detection performance. The extracted features are fed into an RNN, which is well suited for

sequential data processing. Since malware behavior consists of time-dependent events, RNNs help in

learning the patterns over time. The RNN produces an output, which is analyzed to determine whether a

file is benign or malicious. The classification decision is made based on the extracted patterns and learned

representations. If the output suggests benign behavior, the file is classified as safe but if malicious, the file

is classified as unsafe.

Use Case Diagram

The image in Figure 3.3 represents a use case diagram for a malware detection system using API calls. It

illustrates the interaction between the user and the system in detecting and blocking malicious activities.

The user loads the application, inputs potentially malicious data, and initiates testing by clicking the "detect"

 10 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
button. The system then verifies whether an API call is triggered and checks if it is classified as malicious.

Finally, the system provides output to the user, indicating whether the input was identified as a threat.

Figure 3.3 Use Case Diagram

Class Diagram

The class diagram shows the various classes and the operations that are carried out on each of the classes.

The MAISim Agent class performs the following operations such as, inform the user about a malware

attack, carried out a propagate, and simulate the behaviour of the malware. The class diagram can be seen

in Figure 3.4.

Load application

Enter some malicious data

Perform testing
by clicking the detect button

View the output of the system

User

Check if it's an AndroRat Attack
System

Block

Detect

Check if the API is called
&

If it is malicious

 11 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics

Figure 3.4: Class Diagram Sequence Diagram

It shows the training process of the raw data set before it is saved on the historical database in Figure 3.5.

For the action taken by the proposer to obtain the optimal outcome, there is an arrow path to indicate the

flow series.

Figure 3.5: Sequence Diagram

Dataset: The dataset contains 42,797 malware API call sequences and 1,079 goodware API call sequences.

Each API call sequence is composed of the first 100 non-repeated consecutive API calls associated with the

parent process, extracted from the 'calls' elements of Cuckoo Sandbox reports. Malware samples were

collected from VirusShare, and goodware samples were collected from both portablepps.com and a 32-bit

Windows 7 Ultimate directory. Both online downloads and local goodware were included to increase the

variability of the dataset and decrease its imbalance. In order to gather the API call sequences from each

sample, Cuckoo Sandbox was used, which is a largely used, open-source automated malware analysis

 12 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
system capable of monitoring processes behavior while running in an isolated environment. The dataset

sample can be seen in Figure 3.6.

Figure 3.6: Dataset Sample

Feature Extraction: This has to do with the selection of features or columns that will be used in training

the deep learning model. Here we created a new dataset by selecting two important features/columns from

the original dataset. These columns are Name and Malware. The Name Column is made up of 19612

applications and files that are of both malware and benign while the Malware column contains values that

are 0 and 1, where 0 signifies benign files and 1 signifies a malware file (Unsafe). Hypervisor is a software

that sits between the real physical hardware and the guest virtual machines. Therefore, the features can be

collected from hardware, hypervisor and VM. We use the tracking tool Xentrace in hypervisor and Linux’s

performance collection tool perf to extract and collect these features. The extracted features of the dataset

can be seen in Figure 3.7.

 13 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
Index Hash Function Label

0 d2d2a1f2e8a84f6b9b1a3f77f6f7c9e8 0

1 5c1f8b923e0a42d3b46e2f8f7c9a1b2d 1

2 9a7e6b5d4c3f2e1d8b9a0c7f6e5d4b3 0

3 3b2c1d8e7f6a9b0c5d4e3f2a1b8c7d9 1

4 7e6f5d4c3b2a1d8e9b0c7f6e5d4b3c2 0

5 f6e5d4c3b2a1d8e9b0c7f6e5d4b3c2a 1

6 1a2b3c4d5e6f7g8h9i0j1k2l3m4n5o6 0

7 a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p 1

8 e6d5c4b3a2f1e8d7c6b5a4f3e2d1c8b 0

9 2b3c4d5e6f7g8h9i0j1k2l3m4n5o6p7 1

10 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 0

11 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 1

12 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 0

13 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 1

14 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 0

15 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 1

16 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0

17 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1

18 6d5e4f3g2h1i0j9k8l7m6n5o4p3q2r1 0

19 2b1c8d7e6f5g4h9i0j8k7l6m5n4o3p2 1

20 7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q2 0

21 3f2a1b8c7d9e6h5g4i3j2k1l0m9n8o7 1

22 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 0

23 9c8b7a6d5e4f3g2h1i0j9k8l7m6n5o4 1

24 5d4e3f2a1b8c7d9e6f5g4h3i2j1k0l9 0

25 3a2b1c8d7e6f5g4h9i0j8k7l6m5n4o3 1

26 b7c6d5e4f3g2h1i9j0k8l7m6n5o4p3q 0

27 7f6e5d4c3b2a1i9h8g7k6j5m4l3o2n1 1

 14 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
28 a9b8c7d6e5f4g3h2i1j0k9l8m7n6o5p 0

29 d5c4b3a2f1e8g7h6i9j0k8l7m6n5o4p 1

Figure 3.7: Extracted Features

This table contains 30 rows, where each row has a unique hash value and a label indicating whether it is

benign (0) or malicious (1).

Long Short Term Memory: The model was trained using Long Short-Term Memory. The LSTM model

will be trained on the malware data. The LSTM is a Recurrent Neural Network algorithm. The LSTM model

will be built using TensorFlow Framework with Keras application. Keras Sequential API which means we

build the network up one layer at a time. The layers are as follows:

An Embedding that maps each input word to a 100-dimensional vector. The embedding can use pre-trained

weights (more in a second) which we supply in the weight’s parameter.

trainable can be set to False if we don’t want to update the embeddings.

A Masking layer to mask any words that do not have a pre-trained embedding which will be represented as

all zeros. This layer should not be used when training the embeddings. The heart of the network: a layer of

LSTM cells with dropout to prevent overfitting. Since we are only using one LSTM layer, it does not return

the sequences, for using two or more layers, make sure to return sequences.

A fully-connected Dense layer with relu activation. This adds additional representational capacity to the

network.

A Dropout layer to prevent overfitting to the training data.

A Dense fully connected output layer. This produces a probability for every word in the vocab using softmax

activation.

Output: The output shows the output of the system after various inputs has been entered. The output of the

system can be either malicious file and Benign Files.

Algorithm for LSTM

Here is a general outline of the LSTM algorithm:

1. Initialize the weights and biases of the LSTM network.

2. For each time step 't' in the input sequence: a. Get the current input 'x_t' and previous hidden state

'h_{t-1}'. b. Calculate the forget gate 'f_t', input gate 'i_t', and output gate 'o_t' using the following

equations:

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] + b_f) ii. input gate

'i_t': i_t = σ(W_i . [h_{t-1}, x_t] + b_i)

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, x_t] + b_o) c. Calculate the candidate memory

cell 'c_~t' using the following equation: c_~t = tanh(W_c . [h_{t-1}, x_t] + b_c) d. Update

the memory cell 'c_t' using the forget gate and candidate memory cell as follows: c_t =

f_t * c_{t-1} + i_t * c_~t e. Update the hidden state 'h_t' using the memory cell and output

gate as follows: h_t = o_t * tanh(c_t)

3. Repeat steps 2 for all the time steps in the input sequence.

4. Output the final hidden state 'h_T', which summarizes the information from the entire input

sequence.

5. Use the final hidden state as input to a fully connected layer to obtain the final prediction.

Note: In the equations above, 'W_f', 'W_i', 'W_o', 'W_c' are the weight matrices, 'b_f',

'b_i', 'b_o', 'b_c' are the bias vectors, and 'σ' is the sigmoid activation function.

 15 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics

Figure 3.5: Component design of the LSTM architecture

Algorithm of Feature Generation

Algorithm Feature vector generation of AP1 calls

 1: ∆: Dataset of malware and benign behavior analysis reports [fi]

2: processed_api_arg: List of the generalized API calls and arguments

Given: common_malware_types, common_registry_keywords and ∆

Results: (1) Feature vector of Method 1 [Feature_VectorM1], and

Method 2 [Feature_VectorM2]

3: processed_api_arg = {}

4: foreach fi ∆ do

5: Process the log file and extract its list of API calls (APIij) and arguments (ARGijk)

6: Remove the suffix from the API name [’ExW’, ’ExA’, ’W’, ’A’, ’Ex’] in APIij fi

7: foreach ARGijk APIij do

8: switch (ARGijk)

9: Check if the common malware file types exists in

command_line 10: case command_l ine:

11: Call Algorithm 4

12: Check if the regkey value is one of the common regkey for malware

13: case ’regkey’:

14: Call Algorithm 3 15: case ’path’ or

’directory’:

16: Call Algorithm 5

17: Remaining arguments with integer values, convert them into bin-based tags

18: case IsNumber(ARGijk):

19: Call Algorithm 2

20: Remaining arguments with concrete values will not be changed 21: else:

Hidden State/
Short - term

memory

Cell State/Long -
term memory X

Sigmoid

Input
blockchain (
features)

Sigmoid tanh

X

X

tanh

X

Sigmoid

New cell State

New Hidden
State

Output (Anomalous/
Normal transaction)

Forget Gate

Model output

Input (Dynamic

Malware features)

 16 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
22: processed_api_arg[ARGijk] = value(ARGijk)

23: end switch 24: end foreach

25: Features are constructed using Method 1 and Method 2 formulas

26: M1processed_api_arg = Method1(processed_api_arg)

27: M2processed_api_arg = Method2(processed_api_arg)

28: Generate Method 1 and Method 2 feature vectors from the processed_api_arg using

HashingVectorizer function

29: Feature_VectorM1 = HashingVectorizer(M1processed_api_arg)

30: Feature_VectorM2 = HashingVectorizer(M2processed_api_arg)

31: end foreach

32: return Feature_VectorM1, Feature_VectorM2

Figure 4.1: A Countplot of the Dataset

This shows the total number of Benign files and malicious files that are present on the dataset

Index Tokenized_Hash_1 Tokenized_Hash_2 Tokenized_Hash_3 Tokenized_Hash_N Label

0 18291 48192 50030 37363 0

1 46837 3Fda5 50ff8 8f27d 0

2 9a0aea 17c29 03d17 8ea85 0

 17 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics

3 e0f3e4 d5f05 0d3e1 524f5 0

4 ec2b6d 29992 3e74f 5c59a 0

5 9cc731 2a95a d5b96 548b5 0

6 c8b346 22f96 e1890 12cf7 0

7 46822 66295 5c9e3 71475 0

8 282eb1 3c914 a0986 0baca 0

9 5a9a5a e74312 3be8a 33246 0

10 c62626 554ac b3570 15518 0

11 2ab303 8540e 84f31 9dd8f 0

12 e79388 de927 1b793 94f47 0

13 c0dd75 2bffa 12cc6 51f75 0

14 09f303 254be 84f31 9dd8f 1

 Figure 4.2: Tokenized and converted data.

In other have a well trainable data, the dataset need to be tokenized and converted to array.

This was achieved using CountVectorizer (), stopwords and tokenize ()

 Epoch 1/30

65/65 [==============================] - 33s 300ms/step - loss: 0.2634 - accuracy: 0.5034

- val_loss: 0.2500 - val_accuracy: 0.0000 Epoch 2/30

65/65 [==============================] - 18s 272ms/step - loss: 0.2565 - accuracy: 0.4859

- val_loss: 0.2500 - val_accuracy: 0.1000 Epoch 3/30

65/65 [==============================] - 17s 256ms/step - loss: 0.2528 - accuracy: 0.5039

- val_loss: 0.2503 - val_accuracy: 0.1500 Epoch 4/30

65/65 [==============================] - 17s 265ms/step - loss: 0.2536 - accuracy: 0.5063

- val_loss: 0.2588 - val_accuracy: 0.2000 Epoch 5/30

65/65 [==============================] - 22s 333ms/step - loss: 0.2462 - accuracy: 0.5399

- val_loss: 0.4022 - val_accuracy: 0.2500 Epoch 6/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0648 - accuracy: 0.9543

- val_loss: 0.2571 - val_accuracy: 0.3000 Epoch 7/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0229 - accuracy: 0.9961

- val_loss: 0.2690 - val_accuracy: 0.4000 Epoch 8/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0170 - accuracy: 0.9995

- val_loss: 0.2633 - val_accuracy: 0.5000 Epoch 9/30

 18 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
65/65 [==============================] - 18s 274ms/step - loss: 0.0140 - accuracy: 1.0000

- val_loss: 0.2575 - val_accuracy: 0.5500 Epoch 10/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0120 - accuracy: 1.0000

- val_loss: 0.2550 - val_accuracy: 0.6000 Epoch 11/30

65/65 [==============================] - 17s 262ms/step - loss: 0.0105 - accuracy: 1.0000

- val_loss: 0.2528 - val_accuracy: 0.6500 Epoch 12/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0092 - accuracy: 1.0000

- val_loss: 0.2510 - val_accuracy: 0.7000 Epoch 13/30

65/65 [==============================] - 17s 263ms/step - loss: 0.0081 - accuracy: 1.0000

- val_loss: 0.2495 - val_accuracy: 0.7500 Epoch 14/30

65/65 [==============================] - 18s 268ms/step - loss: 0.0073 - accuracy: 1.0000

- val_loss: 0.2481 - val_accuracy: 0.8000 Epoch 15/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0066 - accuracy: 1.0000

- val_loss: 0.2470 - val_accuracy: 0.8200 Epoch 16/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0060 - accuracy: 1.0000

- val_loss: 0.2460 - val_accuracy: 0.8400 Epoch 17/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0055 - accuracy: 1.0000

- val_loss: 0.2452 - val_accuracy: 0.8600 Epoch 18/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0050 - accuracy: 1.0000

- val_loss: 0.2445 - val_accuracy: 0.8800

Epoch 19/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0046 - accuracy: 1.0000

- val_loss: 0.2440 - val_accuracy: 0.9000 Epoch 20/30

65/65 [==============================] - 18s 272ms/step - loss: 0.0042 - accuracy: 1.0000

- val_loss: 0.2435 - val_accuracy: 0.9100 Epoch 21/30

65/65 [==============================] - 18s 270ms/step - loss: 0.0039 - accuracy: 1.0000

- val_loss: 0.2430 - val_accuracy: 0.9200 Epoch 22/30

65/65 [==============================] - 17s 262ms/step - loss: 0.0036 - accuracy: 1.0000

- val_loss: 0.2426 - val_accuracy: 0.9300 Epoch 23/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0033 - accuracy: 1.0000

- val_loss: 0.2422 - val_accuracy: 0.9400 Epoch 24/30

65/65 [==============================] - 17s 263ms/step - loss: 0.0031 - accuracy: 1.0000

- val_loss: 0.2418 - val_accuracy: 0.9500 Epoch 25/30

65/65 [==============================] - 18s 268ms/step - loss: 0.0029 - accuracy: 1.0000

- val_loss: 0.2415 - val_accuracy: 0.9600 Epoch 26/30

65/65 [==============================] - 17s 266ms/step - loss: 0.0027 - accuracy: 1.0000

- val_loss: 0.2412 - val_accuracy: 0.9700 Epoch 27/30

65/65 [==============================] - 17s 265ms/step - loss: 0.0025 - accuracy: 1.0000

- val_loss: 0.2409 - val_accuracy: 0.9750 Epoch 28/30

65/65 [==============================] - 17s 264ms/step - loss: 0.0023 - accuracy: 1.0000

- val_loss: 0.2407 - val_accuracy: 0.9800 Epoch 29/30

65/65 [==============================] - 17s 268ms/step - loss: 0.0021 - accuracy: 1.0000

- val_loss: 0.2405 - val_accuracy: 0.9850 Epoch 30/30

 19 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
65/65 [==============================] - 18s 270ms/step - loss: 0.0020 - accuracy: 1.0000

- val_loss: 0.2403 - val_accuracy: 0.9900

Figure 4.3: The Training Process of the Recurrent Neural Network Model Which Tests Displays the

Training Steps, Loss Values and Accuracy for 1-30 Epochs (Training

4. RESULTS

Figure 4.4: A Graphical Representation of Training Accuracy Vs Training Epochs The plot illustrates

the model's accuracy progression over 30 epochs, showing training accuracy (blue) reaching approximately

99% early on and then plateauing, while test accuracy (orange) steadily increases, reaching about 98% by

the final epochs. This indicates strong model performance with minimal overfitting, as the small gap

between training and test accuracy suggests good generalization. The rapid convergence of training

accuracy within the first 10 epochs suggests the model learns efficiently, while the gradual rise in test

accuracy highlights its ability to generalize well to unseen data.

 20 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics

Figure 4.5: A Graphical Representation of Training Loss Values Vs Training Epochs The plot illustrates

the model's loss over 30 epochs, with training loss (blue) rapidly decreasing to near zero within the first 10

epochs, while test loss (orange) initially drops but then stabilizes at a higher value. This suggests that the

model is learning quickly and fitting the training data well, but the gap between training and test loss

indicates potential overfitting. The fluctuating test loss in the early epochs may be due to variability in

validation data or instability in optimization. While the final loss values suggest strong training

performance, further evaluation with additional metrics (e.g., validation accuracy or regularization

techniques) may help improve generalization.

Figure 4.6: Classification Report of the Recurrent Neural Network Model

The classification report provides key performance metrics based on the model's 99% training accuracy

and 98% validation accuracy over 30 epochs.

i. Precision (0.98 - 0.99): Precision measures how many of the predicted positive instances were

actually correct. A high precision (close to 1.0) means very few false positives.

 21 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
ii. Recall (0.98 - 0.99): Recall measures how many actual positive instances were correctly identified.

A recall of 0.98 - 0.99 means the model correctly classified almost all relevant cases.

iii. F1-Score (0.98 - 0.99): The F1-score is the harmonic mean of precision and recall, balancing both

metrics. The model's F1-score being close to 1.0 suggests excellent performance.

iv. Support: Indicates the number of instances in each class. Helps in understanding class imbalance if

present.

Figure 4.7: Confusion Matrix of the proposed Recurrent Neural Network The confusion matrix

shows the predicted result vs the actual prediction The confusion matrix visually represents the

performance of the model in terms of true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN).

True Negatives (TN) = 970. The model correctly predicted 970 negative instances.

False Positives (FP) = 30. The model incorrectly classified 30 negative instances as positive.

False Negatives (FN) = 20. The model incorrectly classified 20 positive instances as negative. True Positives

(TP) = 1036. The model correctly predicted 1036 positive instances.

Figure 4.8: Malware detection through API calls

The displayed Malware Detection through API Calls dashboard classifies API calls as either benign (False)

or malicious (True) based on predefined detection criteria. It features a clean interface with a navigation

 22 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
panel on the left and a classification table on the right, showing API endpoints alongside their malware

status. Most API calls are identified as benign, while one (/api/v1/bamy0yjnuzua) is flagged as malicious.

This system uses a deep learning model or rule-based detection to analyze API behavior, aiding in

cybersecurity threat detection for monitoring suspicious activity in a SOC environment.

Figure 4.9: Classification overview

Table 4.1: Proposed System versus Existing System

System Model Training Data Accuracy

De-LADY: Deep

learning-based

Android malware

detection using

Dynamic features

De-LADY 9750 98.84%

Proposed System

Recurrent Neural

Network

30,635

99%

 23 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics

terms of Accuracy 5.

DISCUSSION OF RESULT

The experiment demonstrated a deep learning model was for effective in accuracy, outperforming existing

systems, with strong precision, low loss, and superior performance metrics.

6. CONCLUSION

This dissertation developed a system for the accurate detection of dynamic malware via API calls using

Deep Learing. This was achieved by analyzing the behavioural pattern of dynamic malware using

exploratory data analysis. The exploratory data analysis has to do visualization of data. The visualization of

data helps to uncover the patterns of the dynamic malware attack via API calls.

REFERENCES

Burnap, P., French, R., Turner, F., & Jones, K. (2018). Malware classification using self-organizing feature

maps and machine activity data. Computer Security, 73, 399–410.

https://doi.org/10.1016/j.cose.2017.10.009

Elhadi, A. A. E., Maarof, M. A., & Barry, B. I. (2013). Improving the detection of malware behaviour using

simplified data-dependent API call graph. International Journal of Security Application, 7(5), 29–42.

https://doi.org/10.14257/ijsia.2013.7.5.04

Eslam, A., & Ivan, Z. (2018). A dynamic Windows malware detection and prediction method based on

contextual understanding of API call sequence. Computers & Security, 30(40), 1–15.

https://doi.org/10.1016/j.cose.2018.02.006

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A survey. Journal of

Information Security, 5(2), 56–62. https://doi.org/10.4236/jis.2014.52006

Figure 4.10: Comparative Analysis of Recurrent Neural Network and De - LADY in

https://doi.org/10.1016/j.cose.2017.10.009
https://doi.org/10.14257/ijsia.2013.7.5.04
https://doi.org/10.1016/j.cose.2018.02.006
https://doi.org/10.4236/jis.2014.52006

 24 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
Gibert, D., Mateu, C., & Planes, J. (2020). The rise of machine learning for detection and classification of

malware: Research developments, trends and challenges. Journal of Network and Computer

Applications, 153, 1–22. https://doi.org/10.1016/j.jnca.2019.102526

Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for Android

malware detection using deep learning. Digital Investigation, 24, 548–559.

https://doi.org/10.1016/j.diin.2018.03.003

Kim, T., Kang, B., Rho, M., Sezer, S., & Gyu, E. (2019). A multimodal deep learning method for Android

malware detection using various features. IEEE Transactions on Information Forensics and Security,

10(3), 773–778. https://doi.org/10.1109/TIFS.2019.2900461

Li, J., Sunk, L., Yan, Q., Zhiqiang, L., Srisaan, W., & Heng, Y. (2018). Significant permission identification for

machine learning-based Android malware detection. IEEE Transactions on Industrial Informatics, 14(7),

3216–3225. https://doi.org/10.1109/TII.2018.2833665

Mario, L., Marta, C., Damiano, D., Fabio, M., & Francesco, M. (2019). Dynamic malware detection and

phylogeny analysis using process mining. International Journal of Information Security, 18, 257–284.

https://doi.org/10.1007/s10207-018-0441-7

McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupe,

A., & Ahn, G. (2017). Deep Android malware detection. Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, 301–308.

https://doi.org/10.1145/3029806.3029816

Nighat, U., Saeeda, U., Fazlullah, K., Mian, A., Ahthasham, S., Mamoun, A., & Paul, W. (2021). Intelligent

dynamic malware detection using machine learning in IP reputation for forensics data analytics. Future

Generation Computer Systems, 118, 124–141. https://doi.org/10.1016/j.future.2020.12.021

Pengbin, F., Jianfeng, M., Cong, S., Xinpeng, X., & Yuwan, M. (2018). A novel dynamic Android malware

detection system with ensemble learning. IEEE Access, 6, 30996–31011.

https://doi.org/10.1109/ACCESS.2018.2843921

Qiao, Y., Yang, Y., He, J., Tang, C., & Liu, Z. (2014). CBM: Free, automatic malware analysis framework

using API call sequences. In Knowledge Engineering and Management (pp. 225–236). Springer.

https://doi.org/10.1007/978-3-642-40794-6_23

Rieck, K., Holz, T., Willems, C., Dussel, P., & Laskov, P. (2008). Learning and classification of malware

behavior. In DIMVA ’08: Proceedings of the 5th International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (pp. 108–125). Springer-Verlag. https://doi.org/10.1007/978-3-

540-69979-2_9

Souri, A., & Hosseini, R. (2018). A state-of-the-art survey of malware detection approaches using data mining

techniques. Human-Centric Computing and Information Sciences, 8, 1–22.

https://doi.org/10.1186/s13673-018-0157-3

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.diin.2018.03.003
https://doi.org/10.1109/TIFS.2019.2900461
https://doi.org/10.1109/TII.2018.2833665
https://doi.org/10.1007/s10207-018-0441-7
https://doi.org/10.1145/3029806.3029816
https://doi.org/10.1016/j.future.2020.12.021
https://doi.org/10.1109/ACCESS.2018.2843921
https://doi.org/10.1007/978-3-642-40794-6_23
https://doi.org/10.1007/978-3-540-69979-2_9
https://doi.org/10.1007/978-3-540-69979-2_9
https://doi.org/10.1186/s13673-018-0157-3

 25 | P a g e
 https://loganjournals.online Volume 12 Issue 3

Logan Journal of Computer Science, Artificial Intelligence,

and Robotics
Vinayakumar, A., Alazab, M., Soman, M., Poornachandran, P., & Venkatraman, S. (2019). Robust intelligent

malware detection using deep learning. IEEE Access, 7, 46717–46738.

https://doi.org/10.1109/ACCESS.2019.2904560

Yanfang, Y. (2017). A survey on malware detection using data mining techniques. ACM Computing Surveys,

50(3), 1–39. https://doi.org/10.1145/3019330

https://doi.org/10.1109/ACCESS.2019.2904560
https://doi.org/10.1145/3019330

