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Abstract: With the rise in new malware threats in recent years, where data security and response time are
crucial for both businesses and home users, the threat is expected to worsen. Despite the widespread use of
anti-malware software, malware infections continue to grow rapidly. These attacks are often aimed at stealing
credentials, executing unauthorized commands, or installing additional malware. One concerning method is
dynamic malware attacks through API calls, where malicious code interacts with an application's APIs in real-
time. The attacker exploits vulnerabilities in the application or its infrastructure to access sensitive data or take
control of the system. To address the issue of dynamic malware attacks through API calls, this paper introduces
a technique for detecting and classifying such attacks.
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1. INTRODUCTION

The development of a real-time malware detection model utilizing Application Programming Interfaces
(APIs) call pattern using Deep Learning has become increasingly vital in the contemporary landscape of
cybersecurity. As malware continues to evolve in sophistication, traditional detection methods often fall
short, necessitating innovative approaches that leverage dynamic analysis techniques.

2. RELATED WORKS

Various studies have explored dynamic malware detection using different approaches, including machine
learning, deep learning, and data mining techniques. Pengbin et al. (2018) introduced EnDroid, a high-
precision dynamic analysis framework for Android malware detection. Eslam and Ivan (2020) leveraged
word embedding techniques to enhance Windows malware detection by analyzing contextual relationships
between API calls. Mario et al. (2019) proposed a malware detection and phylogeny analysis approach
using process mining. Nigat et al. (2021) integrated dynamic malware analysis, cyber threat intelligence,
machine learning, and data forensics to improve cybersecurity. Karbab et al. (2018) developed MalDozer,
an automated system utilizing deep learning for Android malware detection through API sequence
classification. McLaughlin et al. (2017) introduced a deep convolutional neural network (CNN) for Android
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malware detection. Shihang et al. (2021) proposed De-LADY, a dynamic feature-based obfuscation-
resilient malware detection system. Kim et al. (2017) developed a framework for detecting and classifying
malicious Android applications using automatic feature extraction. Vinayakumar et al. (2019) evaluated
machine learning and deep learning models for malware detection and classification across various datasets.
Finally, Souri and Hosseini (2018) provided a comprehensive survey of malware detection approaches
based on data mining techniques, highlighting advancements in the field.

3. SYSTEM DESIGN

System design is the process of designing the elements of a system such as the architecture, modules and
components, the different interfaces of those components and the data that goes through the system.
Architectural Design

The proposed system architecture comprises different components of the system. A detailed description of
the proposed system design can be seen in Figure 3.2.

Data pre-processing
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Figure 3.2: Architecture of the Proposed System

The architecture in the provided image represents a Recurrent Neural Network (RNN)-based malware
detection system using dynamic malware features. The system starts with a database of dynamic malware
features collected from real-world malware samples. These features represent behaviors such as system
calls, API usage, file modifications, and network activities. The raw malware behavior data undergoes pre-
processing to remove noise, standardize formats, and extract relevant features. Important characteristics of
malware behavior are extracted for use in the neural network model. This step helps reduce dimensionality
and improves detection performance. The extracted features are fed into an RNN, which is well suited for
sequential data processing. Since malware behavior consists of time-dependent events, RNNs help in
learning the patterns over time. The RNN produces an output, which is analyzed to determine whether a
file is benign or malicious. The classification decision is made based on the extracted patterns and learned
representations. If the output suggests benign behavior, the file is classified as safe but if malicious, the file
is classified as unsafe.

Use Case Diagram

The image in Figure 3.3 represents a use case diagram for a malware detection system using API calls. It
illustrates the interaction between the user and the system in detecting and blocking malicious activities.
The user loads the application, inputs potentially malicious data, and initiates testing by clicking the "detect"
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button. The system then verifies whether an API call is triggered and checks if it is classified as malicious.
Finally, the system provides output to the user, indicating whether the input was identified as a threat.

. Load application

Perform testing
by clicking the detect button
Check if the API is called
&
If it is malicious

View the output of the system

User

Figure 3.3 Use Case Diagram
Class Diagram

System

The class diagram shows the various classes and the operations that are carried out on each of the classes.
The MAISim Agent class performs the following operations such as, inform the user about a malware
attack, carried out a propagate, and simulate the behaviour of the malware. The class diagram can be seen

in Figure 3.4.
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Figure 3.4: Class Diagram Sequence Diagram

It shows the training process of the raw data set before it is saved on the historical database in Figure 3.5.
For the action taken by the proposer to obtain the optimal outcome, there is an arrow path to indicate the
flow series.
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Figure 3.5: Sequence Diagram

Dataset: The dataset contains 42,797 malware API call sequences and 1,079 goodware API call sequences.
Each API call sequence is composed of the first 100 non-repeated consecutive API calls associated with the
parent process, extracted from the 'calls' elements of Cuckoo Sandbox reports. Malware samples were
collected from VirusShare, and goodware samples were collected from both portablepps.com and a 32-bit
Windows 7 Ultimate directory. Both online downloads and local goodware were included to increase the
variability of the dataset and decrease its imbalance. In order to gather the API call sequences from each
sample, Cuckoo Sandbox was used, which is a largely used, open-source automated malware analysis
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system capable of monitoring processes behavior while running in an isolated environment. The dataset
sample can be seen in Figure 3.6.
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Figure 3.6: Dataset Sample

Feature Extraction: This has to do with the selection of features or columns that will be used in training
the deep learning model. Here we created a new dataset by selecting two important features/columns from
the original dataset. These columns are Name and Malware. The Name Column is made up of 19612
applications and files that are of both malware and benign while the Malware column contains values that
are 0 and 1, where 0 signifies benign files and 1 signifies a malware file (Unsafe). Hypervisor is a software
that sits between the real physical hardware and the guest virtual machines. Therefore, the features can be
collected from hardware, hypervisor and VM. We use the tracking tool Xentrace in hypervisor and Linux’s
performance collection tool perf to extract and collect these features. The extracted features of the dataset
can be seen in Figure 3.7.
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Index Hash Function Label
0 d2d2alf2e8a84f6b9bla3f77f6f7c9e8
1 5¢118b923e0a42d3b46e2{8f7c9alb2d
2 9a7e6b5d4c312e1d8b9a0c7f6e5d4b3
3 3b2c1d8e7f6a9b0c5d4e3f2a1b8c7d9
4 7e6f5d4c3b2ald8e9b0c7f6e5d4b3c2
5 foe5d4c3b2ald8e9b0c7f6e5d4b3c2a
6 1a2b3c4d5e6£7g8h9i0j1k213m4nS06
7 alb2c3d4e5f6g7h819j0k112m3n405p
8 e6d5c4b3a2fle8d7c6b5a4f3e2d1c8b
9 2b3c4d5e6f7g8h9i0j1k213m4n506p7
10 9c8b7a6d5e4f3g2h110j9k817m6NnS04
11 S5d4e3f2alb8c7d9e6f5g4h3i2j1k019
12 3a2blc8d7e6f5g4h9i0j8k716m5n4o03
13 b7c6d5e4f3g2h119j0k817m6énS04p3q
14 7f6e5d4c3b2ali9h8g7k6j5m41302n1
15 a9b8c7d6e5f4g3h2i1j0k918m7n605p
16 d5c4b3a2f1e8g7h619j0k817m6nSodp
17 3f2alb8c7d9e6h5g4i3j2k110m9n8o7
18 6d5e4f3g2h1i0j9k817m6n504p3q2rl
19 2b1c8d7e6f5g4h9i0j8k716mSn403p2
20 7c6d5e41322h119j0k817m6nS504p3q2
21 3f2a1b8c7d9e6h5g4i3j2k110m9n8o7
22 d5c4b3a2f1e8g7h619j0k817m6nS04p
23 9c8b7a6d5e4f3g2h110j9k817m6nS04
24 5d4e3f2alb8c7d9e6f5g4h3i2j1k019
25 3a2b1c8d7e6f5g4h910j8k716m5Sn4o3
26 b7c6d5e4f3g2h1i9j0k817m6nS504p3q
27 7f6e5d4c3b2ali9h8g7k6j5m41302n1
13|Page




Logan Journal of Computer Science, Artificial Intelligence,

28 a9b8c7d6e5t4g3h2i1j0k918m7n605p 0

29 d5c4b3a2f1e8g7h619j0k817m6n504p 1

Figure 3.7: Extracted Features

This table contains 30 rows, where each row has a unique hash value and a label indicating whether it is
benign (0) or malicious (1).

Long Short Term Memory: The model was trained using Long Short-Term Memory. The LSTM model
will be trained on the malware data. The LSTM is a Recurrent Neural Network algorithm. The LSTM model
will be built using TensorFlow Framework with Keras application. Keras Sequential API which means we
build the network up one layer at a time. The layers are as follows:

An Embedding that maps each input word to a 100-dimensional vector. The embedding can use pre-trained
weights (more in a second) which we supply in the weight’s parameter.

trainable can be set to False if we don’t want to update the embeddings.

A Masking layer to mask any words that do not have a pre-trained embedding which will be represented as
all zeros. This layer should not be used when training the embeddings. The heart of the network: a layer of
LSTM cells with dropout to prevent overfitting. Since we are only using one LSTM layer, it does not return
the sequences, for using two or more layers, make sure to return sequences.

A fully-connected Dense layer with relu activation. This adds additional representational capacity to the
network.

A Dropout layer to prevent overfitting to the training data.

A Dense fully connected output layer. This produces a probability for every word in the vocab using softmax
activation.

Output: The output shows the output of the system after various inputs has been entered. The output of the
system can be either malicious file and Benign Files.

Algorithm for LSTM

Here is a general outline of the LSTM algorithm:

1. Initialize the weights and biases of the LSTM network.

2. For each time step 't' in the input sequence: a. Get the current input 'x_t' and previous hidden state
'h_{t-1}'. b. Calculate the forget gate 'f t', input gate 'i_t', and output gate 'o_t' using the following
equations:

i. forgetgate'f t"f t=co(W _f.[h {t-1},x t]+b f) ii input gate

Nthit=o(W_ i.[h {t-1},x t]+Db i)

iil. output gate 'o t: o t=o(W_o.[h {t-1},x t]+b o) c. Calculate the candidate memory
cell 'c_~t'using the following equation: ¢ ~t=tanh(W _c.[h {t-1},x t]+b c)d. Update
the memory cell 'c_t' using the forget gate and candidate memory cell as follows: ¢ t =
f t*c {t-1} +1i t*c ~te. Update the hidden state 'h_t' using the memory cell and output
gate as follows: h_t=o0 t* tanh(c t)

3. Repeat steps 2 for all the time steps in the input sequence.

4. Output the final hidden state 'h T', which summarizes the information from the entire input
sequence.

5. Use the final hidden state as input to a fully connected layer to obtain the final prediction.

Note: In the equations above, 'W_f,'W 1','W _o0','W_c¢' are the weight matrices, 'b_f',
b i','b_0','b_c'are the bias vectors, and 'c' is the sigmoid activation function.
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Figure 3.5: Component design of the LSTM architecture

Algorithm of Feature Generation
Algorithm Feature vector generation of AP1 calls

1: A: Dataset of malware and benign behavior analysis reports [fi]
2: processed api_arg: List of the generalized API calls and arguments
Given: common_malware types, common_registry keywords and A
Results: (1) Feature vector of Method 1 [Feature VectorM1], and
Method 2 [Feature VectorM2]
: processed api arg = {}
foreach f; E A do
: Process the log file and extract its list of API calls (API;) and arguments (ARGijx)
: Remove the suffix from the API name [’ExW’, ’ExA’, "W’, ’A’, ’Ex’] in API;; E f;
: foreach ARG;j E API;j do
switch (ARG;)
Check if the common malware file types exists in

command line 10: case command 1 ine:

11: Call Algorithm 4

12: Check if the regkey value is one of the common regkey for malware

13: case 'regkey’:

14: Call Algorithm 3 15: case ’path’ or

“directory’:

16: Call Algorithm 5

17: Remaining arguments with integer values, convert them into bin-based tags
18: case IsNumber(ARGijx):

19: Call Algorithm 2
20: Remaining arguments with concrete values will not be changed 21: else:

N TN B Y (R V)

https://loganjournals.online | Volume 12 Issue 3 |

15|Page




22:
23:
25:
26:
27:
28:

29:
30:
31
32:

ount

Logan Journal of Computer Science, Artificial Intelligence,

processed_api_arg[ ARGijk] = value(ARGijx)
end switch 24: end foreach
Features are constructed using Method 1 and Method 2 formulas

MIlprocessed api_arg = Method1(processed api_arg)

M2processed api_arg = Method2(processed api_arg)

Generate Method 1 and Method 2 feature vectors
HashingVectorizer function

Feature VectorM1 = HashingVectorizer(M1processed api_arg)

Feature VectorM2 = HashingVectorizer(M2processed _api_arg)

: end foreach

return Feature VectorM1, Feature VectorM?2

from the processed api arg using

1000

(o)

Figure 4.1: A Countplot of the Dataset
This shows the total number of Benign files and malicious files that are present on the dataset

labels
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Index |Tokenized_Hash_1 |Tokenized Hash_2 |Tokenized_Hash_3 |Tokenized_Hash_N |Label

0 18291 48192 50030 37363 0

1 46837 3Fda5 50118 8f27d 0

2 9a0aea 17¢29 03d17 8eal85 0
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3 e0f3e4 d5f05 0d3el 52415 0
4 ec2b6d 29992 3e74f 5¢59a 0
5 9cc731 2a95a d5b96 548b5 0
6 c8b346 22196 e1890 12ct7 0
7 46822 66295 5¢9e3 71475 0
8 282ebl 3c¢914 a0986 Obaca 0
9 5a%aSa e74312 3be8a 33246 0
10 c62626 554ac b3570 15518 0
11 2ab303 8540e 84131 9dd8&f 0
12 €79388 de927 1b793 94147 0
13 c0dd75 2bffa 12¢cc6 51£75 0
14 091303 254be 84131 9dd8&f 1

Figure 4.2: Tokenized and converted data.
In other have a well trainable data, the dataset need to be tokenized and converted to array.
This was achieved using CountVectorizer (), stopwords and tokenize ()
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65/65 [ 1 - 18s 270ms/step - loss: 0.0020 - accuracy: 1.0000
- val loss: 0.2403 - val accuracy: 0.9900

Figure 4.3: The Training Process of the Recurrent Neural Network Model Which Tests Displays the
Training Steps, Loss Values and Accuracy for 1-30 Epochs (Training

4. RESULTS

Model Accuracy
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Figure 4.4: A Graphical Representation of Training Accuracy Vs Training Epochs The plot illustrates
the model's accuracy progression over 30 epochs, showing training accuracy (blue) reaching approximately
99% early on and then plateauing, while test accuracy (orange) steadily increases, reaching about 98% by
the final epochs. This indicates strong model performance with minimal overfitting, as the small gap
between training and test accuracy suggests good generalization. The rapid convergence of training
accuracy within the first 10 epochs suggests the model learns efficiently, while the gradual rise in test
accuracy highlights its ability to generalize well to unseen data.
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Model Loss Over 30 Epochs
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Figure 4.5: A Graphical Representation of Training Loss Values Vs Training Epochs The plot illustrates
the model's loss over 30 epochs, with training loss (blue) rapidly decreasing to near zero within the first 10
epochs, while test loss (orange) initially drops but then stabilizes at a higher value. This suggests that the
model is learning quickly and fitting the training data well, but the gap between training and test loss
indicates potential overfitting. The fluctuating test loss in the early epochs may be due to variability in
validation data or instability in optimization. While the final loss values suggest strong training
performance, further evaluation with additional metrics (e.g., validation accuracy or regularization
techniques) may help improve generalization.

Classification Report - Training 999, Validation 28%

Class O .98 .98 oas ! ’ 1750

G Class 1 ). 99 =~ 0. 99
L]
—
AvgiTotal O % 0.9% D99
precision recall fl-score support

Metrics

Figure 4.6: Classification Report of the Recurrent Neural Network Model
The classification report provides key performance metrics based on the model's 99% training accuracy
and 98% validation accuracy over 30 epochs.
i. Precision (0.98 - 0.99): Precision measures how many of the predicted positive instances were
actually correct. A high precision (close to 1.0) means very few false positives.
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ii. Recall (0.98 - 0.99): Recall measures how many actual positive instances were correctly identified.
A recall of 0.98 - 0.99 means the model correctly classified almost all relevant cases.

iii. ~ F1-Score (0.98 - 0.99): The F1-score is the harmonic mean of precision and recall, balancing both
metrics. The model's F1-score being close to 1.0 suggests excellent performance.

iv.  Support: Indicates the number of instances in each class. Helps in understanding class imbalance if

present.
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Figure 4.7: Confusion Matrix of the proposed Recurrent Neural Network The confusion matrix
shows the predicted result vs the actual prediction The confusion matrix visually represents the
performance of the model in terms of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).
True Negatives (TN) = 970. The model correctly predicted 970 negative instances.
False Positives (FP) = 30. The model incorrectly classified 30 negative instances as positive.
False Negatives (FN) = 20. The model incorrectly classified 20 positive instances as negative. True Positives
(TP) = 1036. The model correctly predicted 1036 positive instances.

valware Detection

Navigation Malware Detection through API Calls
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R Malw " - o
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Figure 4.8: Malware detection through API calls
The displayed Malware Detection through API Calls dashboard classifies API calls as either benign (False)
or malicious (True) based on predefined detection criteria. It features a clean interface with a navigation
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panel on the left and a classification table on the right, showing API endpoints alongside their malware
status. Most API calls are identified as benign, while one (/api/v1/bamyOyjnuzua) is flagged as malicious.
This system uses a deep learning model or rule-based detection to analyze API behavior, aiding in
cybersecurity threat detection for monitoring suspicious activity in a SOC environment.
Classitication Overview

APl Calls Ciassification

Count

1 -

o

Malicious Benign

Figure 4.9: Classification overview
Table 4.1: Proposed System versus Existing System
System Model Training Data Accuracy
De-LADY:  Deep De-LADY 9750 98.84%
learning-based
Android  malware
detection using
Dynamic features

Proposed System Recurrent Neural 30,635 99%
Network
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Ecluation of Model Performance With Other Existing Systems

100 -

Accuracy Score(%a)

20 1

0 -

De-LADY

Proposed System.
Models
Figure 4.10: Comparative Analysis of Recurrent Neural Network and De -LADY in

terms of Accuracy 5.

DISCUSSION OF RESULT

The experiment demonstrated a deep learning model was for effective in accuracy, outperforming existing

systems, with strong precision, low loss, and superior performance metrics.

6. CONCLUSION

This dissertation developed a system for the accurate detection of dynamic malware via API calls using

Deep Learing. This was achieved by analyzing the behavioural pattern of dynamic malware using

exploratory data analysis. The exploratory data analysis has to do visualization of data. The visualization of

data helps to uncover the patterns of the dynamic malware attack via API calls.
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