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Introduction  

Money laundering has become a pervasive and insidious crime that presents a significant threat to Nigeria’s 

financial sector, with far-reaching consequences for economic stability, national security, and global financial 

integrity (Canhoto, 2021). The Financial Action Task Force (FATF) estimates that up to 5% of global GDP is 

laundered annually, with developing economies like Nigeria disproportionately affected (FATF, 2020).   

LEVERAGING MACHINE LEARNING FOR PROACTIVE 

MONEY LAUNDERING DETECTION IN NIGERIA 
 

Abstract: This paper examined the effectiveness of machine learning (ML) Models for the ongoing war 

against money laundering in Nigeria. In advanced economies, the rise of machine learning has revolutionized 

the way financial institutions and governments combat illegal financial activities emanating from mobile 

money transactions. By using advanced algorithms and data analysis techniques, machine learning has proven 

to be an effective tool in identifying suspicious financial transactions and patterns, thereby helping authorities 

take proactive rather than reactive measures in preventing fraudulent transactions. This study aimed to address 

the research gap in the use of reactive approach by Nigeria government, where the prevalence of money 

laundering has risen in recent years, and explored how ML techniques can be utilized to enhance the country’s 

efforts in combating this financial crime. The datasets for this study were obtained from Kaggle website that 

contains fraudulent transactions on money laundering, which was used to train, validate and test the ML 

models. Logistic regression (LR) and Support Vector Machine (SVM) were used as the baseline models while 

Sparse Autoencoder (SAE) neural network was used for feature learning and dimensionality reduction. The 

results indicate that LR classifier still showed reasonable performance but did not outperform the other 

models. Among all the measures, SVM exhibited outstanding performance, with over 90% prediction 

accuracy. The amount of money transferred and location of transactions emerged as top features for predicting 

money laundering transactions in online money transfers. These findings suggest that further research is 

needed to enhance the logistic regression model, and sparse autoencoder neural network should be explored 

as potential tool for law enforcement agencies and Nigeria financial Institutions to proactively learn 

representative data from high dimensional datasets as quality of data improves performance of predictive 

models.  
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In Nigeria, Government approach to the fight against money laundering largely hinges on the law enforcement 

and CBN regulations. This simply implies that Nigeria Government’s efforts in combating money laundering 

have primarily focused on traditional methods such as law enforcement by Economic and Financial Crime 

Commission (EFCC) and regulatory actions by the Central Bank of Nigeria (CBN). This approach has been more 

of reactive than proactive, often involving lengthy litigation period. The commercial Banks which are under the 

obligation of CBN policies on money laundering to furnish EFCC with information needed for investigation and 

conviction of money laundering offenders rely on traditional anti-money laundering (AML) methods known as 

rule-based expert systems. However, due to the explosive growth of electronic transaction information generated 

through online payment channels (Jipeng et al., 2021), this traditional rule-based systems have proven inadequate 

in detecting and preventing these complex financial crimes (Shi et al., 2019).   

To address this challenge, researchers have explored innovative solutions, including machine learning, data 

analytics and deep learning approaches (Wan et  al., 2019; Abavisani & Patel, 2019; Zamini et al., 2019). Machine 

learning (ML), a subset of artificial intelligence, has demonstrated remarkable potentials in detecting and 

preventing financial crimes, including money laundering (Hanbing., 2021). For example, Honlam (2022) agreed 

that a number of ML methods have been developed to learn patterns in credit card frauds, and that these ML 

methods usually depend on sophisticated feature engineering to improve their performances.   

By leveraging ML algorithms and data analytics, financial institutions can improve detection accuracy, reduce 

false positives, and enhance customer due diligence (Jorge et al., 2024). Research has equally highlighted the 

benefits of machine learning in AML, including improved detection of suspicious transactions (Canhoto et al., 

2021), enhanced risk assessment (Shi et al., 2019), and reduced compliance cost (Anubha, et al., 2022)  

In Nigeria, the need for effective AML solutions is particularly pressing. The country’s financial system is 

characterized by a high volume of cash transactions, limited financial inclusion, and inadequate AML 

infrastructure (Omri, 2021). While the Nigeria government has implemented various AML measures, including 

the money laundering (prohibition) Act of 2011 and the Central  

Bank of Nigeria’s AML/CFT policy, challenges still persist (CBN, 2020).  

This study aims to contribute to the development of effective machine learning-based AML solutions in Nigeria, 

building on the existing literature and exploring innovative approaches rather than reactive one to enhance 

financial security and combat economic crime. The datasets for this study were obtained from Kaggle website 

that contains fraudulent transactions on money laundering, which was used to train, validate and test the ML 

models. Logistic regression (LR) and SVM were used as the baseline model and sparse autoencoder (SAE) neural 

network was deployed for representative learning. We combined supervised and unsupervised learning 

approaches.   

2.1 Related Works  

In recent time, autoencoder has found significant applications in various unsupervised learning tasks in several 

application areas such as heart disease prediction and fraud detection. In this regard, (Ibomoiye et al., 2020; Ali 

et al. 2021) proposed a method that combined Support Vector Machine (SVM) and Sparse Auto-encoder (SAE) 

for money laundering detection. The rational there was that the classical SVM has limitations on large scale 

applications; hence, the need to use a sparse auto-encoder to improve its performance. The authors employed 

multiple layers of sparse autoencoder to perform feature learning and used the SVM for classification, thereby 

improving the performance of the SVM in handling large scale datasets. The combined model resulted in 80% 

accuracy in anti-money laundering detection.  In a related study (Moussavi & Jamshidi, 2019), proposed a method 

to perform feature learning using sparse auto-encoder to improve the performance of logistic regression model 

on real-valued time series data. The architecture consists of different layers of sparse autoencoder. The aim of the 
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research was to enhance vehicular traffic flow forecasting. However, in an attempt to increase the accuracy of the 

sparse autoencoder, they proposed a cascaded model which leverages on the combination of low- and high-level 

features, and a stochastic gradient descent algorithm was employed as the regression method.  

Also, in Abavisani and Patel (2019), a sparse representation-based classification method was proposed using a 

transductive deep learning based formulation. The network comprises of a fully connected layer and a 

convolutional autoencoder. The fully connected layer is placed between the encoder and decoder, and its function 

is to find the sparse representation, whereas the autoencoder network learns effective deep features for 

classification. When the estimated sparse codes are used for classification of some datasets, the proposed method 

showed improved performance.   

In Wan et al. (2019), an approach was proposed to derive a formulation that effectively determines the sparse 

hyper-parameter in sparse auto-encoder, in addition to deriving the relationship between the average activation of 

hidden units and sparse hyper-parameter. The authors conducted two experiments and they obtained good 

performance. Another connected study on a novel method equally shows where a sparse autoencoder is used for 

automatic modulation classification (Ibomolye et al., 2020; Ali & Yangyu, 2019). The network was trained using 

a non-negativity constraint algorithm. Experimental results show that the autoencoder with the non-negativity 

constraint enhances the sparsely and minimizes the reconstruction error as compared to the traditional sparse 

autoencoder.   

In a nutshell, the above related studies conclude that a combination of supervised and unsupervised approach to 

machine learning applications have the potentials of improving models performance accuracies. However, while 

only few studies have deployed sparse autoencoder to learn representative variables, non has experimented with 

the three models: LR, SVM and SAE (SAESVM-LR). Unsupervised ML method, compared to the supervised, 

has the advantage of detecting unseen relationships between variables and finding representative features, 

enabling it to replace feature engineering. Therefore, processing the raw data with unsupervised ML may generate 

useful and representative variables. Having representative variables is helpful for many supervised ML methods.   

Previously, Principal Component Analysis (PCA), an unsupervised approach, was commonly used for feature 

engineering task. But, PCA has two drawbacks. First, it can only detect linear relationships between variables. 

Second, it can only generate low dimensional variable space, leading to loss of some information and limiting the 

ability of the model to learn representative variables. Thus, it performs poorly when the relationship is non-linear, 

or the number of variables is of high dimensional. This is where Sparse Autoencoder comes in to address this 

knowledge gap and ensure quality data are used for model training and evaluation. Loss of information, overfitting 

challenges, and false positives are greatly minimized, leading to an improved model performance through 

deployment of Adaptive Moment Estimator (Adam) Optimization algorithm.  

2.2 Data Collection   

Due to challenges in gathering internal or real World data from financial institutions or buying from vendors, we 

relied on money laundering datasets collected from a reliable open source, Kaggle website. The collected dateset 

contains money laundering transactions, which occurred between January and June 2023.  In addition, the dateset 

is highly imbalanced with 568,630 transactions, containing 380,982 negative examples (non-fraudulent). The 

latter accounts for about 67% of all data, while the remaining 187,648 are classified as positive examples (frauds) 

accounting for 33% of the total datasets (568630).   

For want of space, only the first 6 rows of the datasets are shown in table 1. We have a total of 32 transactions 

data and all variables are numerical. An extraction of 6 rows and 10 columns (features) of the money laundering 

datasets are presented in table 1 below.  
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Table 1 First 6 rows of the money laundering Dataset   

id  V1  V2  V3  V4  V5  V6  V7  amount  class  

0 -0.26064 

 -0.46964 

 2.49626 

 -0.083723 

0.12968  0.73289 

 0.51901 

 17982.1 

 0  

1 0.98509 

 -0.35604 

 0.55805 

 -0.429653 

0.27714  0.428604 

 0.40646 

 6531.37 

 0  

2 -0.26027 

 -0.94938 

 1.72853 

 -0.457986 

0.07406  1.419481 

 0.74351 

 2513.54 

 0  

3 -0.15215 

 -0.50895 

 1.74684 

 -1.090177 

0.24948  1.143312 

 0.51826 

 5384.44 

 1  

4 -0.20681 

 -0.16528 

 1.52705 

 -0.448292 
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0.10612  0.530548 

 0.65884 

 14278.9 

 1  

0  

5 0.025302 

 -0.14051 

 1.19113 

 -0.707978 

0.43049  0.458973 

 0.61104 

 6901.49  

  

2.2.1 Data preprocessing   

This is the second and a crucial step in the machine learning method. It involves cleaning the data (removing 

duplicates, correcting errors), handling missing data (either by removing it or filling it in), and normalizing the 

data (scaling the data to a standard format). This approach improves the quality of collected data and ensures that 

proposed AML machine learning model can interpret it correctly. This procedure can significantly improve the 

accuracy of the proposed model and enhance the performance of the model for AML detection.   

2.2.2 Data Balancing   

 There are many ways of handling imbalanced data which are distinguished into data and level algorithms. Among 

these techniques, the preferred one is the algorithm method which involves the use of a confusion matrix and 

balanced accuracy metrics to modify the dataset, re-balance the imbalanced data, and remove noise between two 

classes before using the data in the algorithms. In this regard, the datasets (table 1) were divided into 75% training/ 

25 % testing and 70% training /30% testing for all the supervised Learning algorithms being considered in this 

study. The algorithms are Logistic regression (LR) and Support Vector Machine (SVM).  

2.3 Methodology  

 Sparse auto-encoder (SAE), logistic regression and support vector machine were considered in this study. SAE 

is an unsupervised ML approach for automatic feature engineering tasks. While the auto-encoder is considered 

for feature extraction, Logistic regression and support vector machines were used to train, validate and make 

prediction based on the pre-processed datasets.   

2.3.1 Sparse Autoencoder  

The SAE consists of two parts: encoder and decoder (figure1). The encoder transforms input layer into encode 

layer, then the decoder transforms encode layer into output layer. The loss function of SAE is the reconstruction 

error between the input layer and the output layer (equation 4). By minimizing this loss function, SAE learns 

representative features in the encode layer. Because the dimension of the encode layer is smaller than that of the 

input layer, the learned representation should be the most important part of the input data. Otherwise, the output 

derived from the encode layer will differ from the input data.    

In addition, Sparse Auto-encoder further applies sparsely constraints to prevent over-fitting (equation 6). That is, 

the loss function of SAE adds on a penalty term proportional to magnitude of the encode layer. By using activity 

regularization, SAE limits the number of active neurons in the encode layer, thus preventing the neural network 

from simply copying output from input (Honlam, 2022; Hanbing, 2021; Ibomoiye, 2020).    
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z the new representation.  

Z = h (wx +b)      [1]  = g( z + )                                                                                              [2]  

In the above formulation, h is the activation function for the hidden layer neurons and g is for the output layer 

neurons, w and  are weight matrices, b and  are respectively the encoder and decoder bias vectors. In this paper, 

the sigmoid activation function is utilized, which is shown in Equation (3) instead of the others such as ReLU, 

Tanh etc.  

  f (h)=     𝟏 +𝟏𝒆−𝒉    =        𝟏  +𝒆−(
𝟏𝒃𝒐+𝒃𝟏𝒙)                          [3]  

As we move forwards through more layers, the level of abstraction increases. Let’s now analyse the activation 

functions in little more detail. Previously our activation was just a simple function that outputs 0 or 1 from the 

relation Z= wx + b  

Unfortunately, there is a pretty dramatic function since small changes such as (0.1, 0.2,-1.0 etc.)  are not reflected, 

So, it would be nice if we have a more dynamic function which combines sigmoid and activation functions ( 

Sigmoid function+ activation function). So we can integrate sigmoid function with activation function to handle 

not just 0 and 1 output but as well as small changes.  We can replace h in equation 3 with z. So we have:  

f(h) = f(x) =      𝟏 +𝟏𝒆−𝒉  =      𝟏 +
𝟏𝒆−𝒛     =   𝟏  +𝒆−𝟏(𝒘𝒙 +𝒃)            [4]  

Recall that z = wx + b from equation 1  

The reconstruction loss (error) function E between the input x and reconstructed input  uses the mean squared 

error (MSE) function shown in Equation (4).   

N1 iN=1 xi + x'i2                                                                                   [5]          

E =         

Note:   = x’                                                                                              

N represents the number of input samples (in this case 32). However, in this research it is important to express 

that a sparse auto-encoder is utilized to obtain an effective low-level representation of the input data under sparse 

constraints. Hence, sparsity is introduced by including regularization to the loss function. Let i be the average 

activation of neurons in the hidden layer.  
i = 1 nzi ( xj )                                                                                         [6]                                                 

 n j = 1 

From Equation (5) i, n, and j represents the  neuron, total number of training samples, and the training sample 

respectively. The average activation i approaches p that is a constant close to zero. Hence, the Kullback-Leibler 

(KL) divergence is used to add the regularizer to the loss function. The KL divergence is introduced to achieve 

sparsity.  

Figure 1 Sparse Autoencoder work flow (Jia n   et al., 2019)   

The encoder maps the input to a new representation. This new representation is then decoded at  

the output to reconstruct the input      according to Equations (1) and (2), where x is the input and  



 

45 | P a g e  

Logan Journal of Computer Science, Artificial Intelligence, and Robotics 

 https://loganjournals.online           Volume 12 Issue 1     

 sparsity = d= p log( pp') + (1−P)log(11−−pp'                                    

[7] ) 

i 1 

Note:   i = P’  

From Equation (6) d represents the total number of neurons in a layer, whereas p is the sparsity proportion, which 

is the needed activation value. Therefore, the SAE error function now comprises of the mean square error and the 

regularization terms. Furthermore, in order to control the weights and prevent over-fitting, L2 regularization 

(L2R) is introduced in the loss function.  

 L N K 

 weights = 12 . . (wij )(I)                                             [8]                                  

 i j i 

L and K represent the number of hidden layers and number of features in a sample, respectively  

(Mienye et al., 2020; Zia & Rehman, 2019). The weight attenuation units as seen in Equation (8) is then included. 

After adding the various regularization terms, i.e. Equations (6) and (7) into Equation (4) which is the 

reconstruction error E, our loss function becomes:  

E = 1 N K (xkn − x' kn))2 + * weights + * sparsity                                                                   [9]  

N n=1 K =1 

There are three optimization parameters here: λ which is the coefficient for L2R and it prevents over-fitting, the 

second parameter is β, the sparsity regularization parameter, and it sets the sparsity penalty term. Lastly, p is the 

sparsity proportion which controls the needed sparsity level. The optimization parameter values for λ, β, and p 

are 0.0001, 0.01, and 0.5 respectively.  

2.3.2 Adaptive Moment Estimator (Adam) Optimizer  

Furthermore, in order to train a robust SAE, the Adam algorithm is used in place of the Adaptive Gradient 

(AdaGrad) algorithm, or Root-mean-square propagation algorithm proposed in 2012. The Adam optimization 

algorithm surfaced in 2014. The choice of this algorithm offers us the opportunity to use a different learning rate 

for various parameters and to come up with dynamic adjustment of various parameters by obtaining the gradient 

first-order moment estimate, mt, and second-order moment estimate, vt, shown in Equations (10)– (12).  

Gradient Computation:  

For every iteration t, Adam computes gradient gt. This gradient is the derivative of the objective function 

concerning the current parameter t.   

gt  = ft( t −1)                                                                                                                                            [10]  

Where:   

gt represents the gradient at iteration t ,   denotes the gradient for parameter , and ft( t −1) is the objective function 

being optimized, evaluated at the parameter values from the previous iteration t - 1.  

With the gradient computed in equation (10), the next step will be to update the first-moment estimator (Mt), 

which stores the moving average of the gradient. This update simply combines the previous value of Mt and the 

new gradient, weighted by parameters 1 and 1- 1 respectively.  Mt = 1.Mt −1+ (1− 1).gt                        [11]  

Where:                                    

                

Mt is the  first-moment vector at time step t  
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                   

1 is the exponential decay rate for the first-moment estimates ( commonly set to be around  

0.9)  

                

gt  is the gradient at time step t  

Similarly, the second-moment vector Vt is also updated. This vector gives an estimate of variance (or 

unpredictability) of the gradient; therefore, it stores the squared gradients that are accumulated. Just like the first 

-moment (Mt), this is also a weighted combination, but of the past squared gradient and current gradient as shown 

in equation (12).  

Vt = 2.Vt −1+(1− 2).gt2                                                                                                                                  [12]  

Where:  

Vt is the second moment vector at time step t, 2 is the exponential decay rate for the second moment estimates 

(commonly set to around 0.999)  

The need to calculate the correct bias in the moments is also essential, Being that mt and Vt are initialized to 0, 

they are biased towards 0, especially during the initial time steps. Adam deals with this bias by correcting the 

vector using decay rate, which is 1 for Mt and 2 for Vt. This correction is vital as it ensures that the moving 

averages are more represented, particular in the early stage of training. Equations (13) and (14) show the 

mathematical expressions for computing correct bias.  

M’t = Mt                                                                                                                                       [13]  

1− 1t 

  

vt 

V’t  = t                                                                                                                                            [14]  

1− 2 

Finally, Adam updates model parameters using equation (15). This is the step where the actual optimization 

occurs, moving the parameters in the direction that minimizes the loss function. Parameter update makes use of 

adaptive learning rates computed in the previous equations  t + 1 = t  - .M 't                                                                  [15]  

V't+  

Where:   

                  

t + 1 represents parameters after the update  

                     

t represents the current parameters before the update  

                  

  is the learning rate, which is an important hyper-parameter that determines the size of step taken towards 

minimizing the loss function  

               

M’t is the bias-corrected first moment estimate of the gradient  

                

V’t is bias corrected second moment estimate of the gradient  

  

(Epsilon) is a small scalar (e -8) added to prevent division by zero and maintain numerical stability.  
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2.3.2 Logistic Regression  

In this section, we will explore logistic regression model to train, test, evaluate and predict fraudulent behaviour 

from reconstructed pre-processed data using dimensionality reduction techniques of SAE. Logistic regression is 

similar to linear regression, but the difference is that it produces a curve while linear regression produces a straight 

line. Based on the usage of one or more predictors or independent variables, logistic regression generates logistic 

curves that depict the values between zero and one (Omri, 2021). There are many different forms of logistic 

regression models, including binary, multiple, and binomial logistic models (Omri, 2021). The binary logistic 

regression model is used to predict the likelihood of a binary response (0 or 1) based on one or more factors.  The 

equation below represents the logistic regression in mathematical form.  

                            

      
 Figure 2: Source (Omri, 2021)  

The contrast between linear regression and logistic regression is seen in this graph, where logistic regression 

depicts a curve and linear regression depicts a straight line (Omri, 2021; Wright, 1995).         

2.3.3 Support Vector Machine  

Support Vector Machine (SVM) is one of the most popular Supervised Learning algorithms, which is used for 

Classification as well as Regression problems. It is primarily used for classification problems in machine 

Learning. SVM maps the variables into a high dimensional space using a kernel function, which then finds a 

hyperplane to maximize the gap between support vectors and to minimize the error of miscalculation 

simultaneously (Pisner & Schnyer, 2020). Hyperplane is a space whose dimension is lower than the mapped 

space. Support vectors are points close to the Hyperplane. On one hand, SVM tries to maximize the margin 

between support vectors to increase the generality of the model. On the other hand, SVM minimizes the 

misclassification to prevent under-fitting. By choosing an appropriate C value, it finds a balance in this bias-

variance tradeoff. In this research, the SVM algorithm was implemented using the Sklearn package in python.  

The kernel was ‘rbf’ and the C value was 1. Consider the below diagram in which two different categories are 

classified using a decision boundary or hyperplane:  
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Figure 3: Support Vector Machine (Omri, 2021)  

2.4 Implementation  

The implementation was done by importing relevant python programming language libraries such as Scikit Learn 

(Sklearn), pandas, NumPy, Tensor flow, Matplotlib, seaborn, and Keras. This was done using the Jupiter 

application programming Interface. The Scikit learn was used to train the Logistic regression and Support Vector 

Machine Models, splitting the given dataset into training and test datasets, usually in an imbalanced manner. After 

training the Models, they were able to classify or predict new or unseen datasets as represented in table 2 and 3.  

2.5 Results and Discussions  

The performance evaluation of the trained datasets for the prediction of unseen or new input is done with a 

confusion matrix to determine how well the models have performed. The choice of a confusion matrix is based 

on imbalanced datasets. The data-set was evaluated with the 2 algorithms to obtain the numbers of true positive 

(TP), True Negative (TN), False positive (FP), and False Negative (FN). True positive means that positive 

examples are correctly assigned to the positive class. In this dataset, it means fraudulent transactions. True 

negative (TN) refers to the negative examples correctly assigned to the negative class, meaning no fraudulent 

transactions occurred. False positive (FP) means that the algorithm incorrectly considers negative examples as 

positive examples. That is predicting non fraudulent transactions as fraudulent. In other words, when a sample 

transaction is non fraudulent, the algorithm mistakenly flags it as an abnormal transaction. False negative (FN) is 

a situation where positive examples are wrongly allocated to a negative class. It means the classified transaction 

is legitimate; however, the algorithm misunderstood this as an illegitimate transaction. The confusion matrix for 

the data-set is shown in the Tables below for different splits of training and testing datasets.   

  

Table 2: Confusion Matrix For Fraud Detection (75% training,25%testing)  

    Logistics Regression            Support Vector Machine  

  

Predicted no  

  

Predicted yes  

  

N  =  

142158  

  

Predicted no  

  

Predicted yes  

  

N = 142158  

TN 47127  FN  

23896  

  

Actual no  

TN 71020  FN  

3  

  

Actual no  
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FP 5998  TP  

65137  

  

Actual Yes  

FP 109  TP  

71026  

  

Actual Yes  

  

Table 3: Confusion Matrix For Fraud Detection (70% training,30%testing)  

    Logistics Regression           Support Vector Machine  

  

Predicted no  

  

Predicted yes  

  

N  =  

170589  

  

Predicted no  

  

Predicted yes  

  

N = 170589  

TN  

85060  

FN 89    

Actual no  

TN  

85124  

FN 25    

Actual no  

FP 166  TP  

85274  

  FP 34  TP  

85406  

  

Actual Yes  

  Actual Yes     

The first model could have been judged by its overall accuracy, which works well for most data sets splits. 

However, the accuracy might be insufficient to reflect the performance of a model in the imbalanced dataset. So, 

balanced accuracy is used in this case to determine whether an algorithm has performed well or not. 

Mathematically, it is represented as:  

Balanced Accuracy    = 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚+𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚   

𝟐 

Balanced Accuracy = 𝟏(𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔 ) + (𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔)  

 𝟐 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 

1 𝑻𝑷 𝑻𝑵 

→ Balanced Accuracy = (  +  )            

2 𝑻𝑷+𝑭𝑷 

 𝑻𝑵+𝑭𝑵 

  

 

In the above formula, TP is true positive, and FP is false positive. TN is True Negative, and FN is False Negative. 

The higher the balanced accuracy is, the more the classification is put into the right place. The balanced accuracy 

analysis in terms of the predictive probabilities of each model is shown in Table 4.  

Here, we found that the proposed AML model (SAE-SV M-LR) with 0.89 predictive probability or 89% balanced 

accuracy outperformed SAE-SV M (Honlam, 2022) which has 80% accuracy when training and testing datasets 

is split to 75% and 25% respectively. Similarly, a better performance prediction holds with a dataset split of 70%/ 

30%, which shows an improvement prediction of the proposed model to 99%.  

Table 4:  comparison SAE-LR-SVM and SAE-SVM  

  

Dataset splits  

  

LR  

  

SVM  

  

SAE-SVM-LR (Avg of LR and SVM)  

  

SAE-SVM  

75%/25%  0.78  0.99  0.89  0.80  

70%/30%  0.99  0.99  0.99  0.89  

47127:  

TN  

23896  

FN  

:  

5998: FP  65137:  

TP  
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Conclusion and Recommendation  

 ML is effective in the area of money laundering Detection (MLD). However, its sterling performance relies 

heavily on sophisticated feature engineering, which is expensive to scale. In previous studies, few attempts have 

been made to combine unsupervised ML with supervised ML. In this work, the proposed model combined SAE, 

LR and SVM. In the first step, the model used SAE to perform the pr-processing task of data reconstruction. As 

a result, SAE extracted representative features in its encode layer. Then the model passed representative features 

to the LR and SVM models. This work used the MLD datasets from Kaggle as input to the model and training 

and model evaluation carried out using the proposed model. The result showed that using SAE to extract 

representative features improved the performance of SVM. This SAE-LR-SV M method achieves 89% and 99% 

balanced accuracy on two different data-set splits for training and testing phases, compared to 80% accuracy 

obtained from SAE-SV M method proposed by (Honlam, 2022). In addition, the SAE-LR-SV M model 

outperforms other auto-encoder-based models regarding the balanced accuracy (Zamini et al., 2019). This is a 

remarkable performance because no model has been able to have 100% prediction due to several factors such 

information loss, imbalanced dataset, overfitting, quality and quantity of dataset to mention but few. Overall, 

Machine Learning algorithms can be successfully used for financial fraud transaction detection. In the future, this 

study will further fine-tune the SAE model and try different classification methods besides SVM and LR. Also, 

this research will be conducted on other MLD datasets to further investigate how well SAE can encode 

complicated transactions.  

Recommendations  

To reduce the over-fitting issue in the training Logistic Regression, Lasso, and Ridge regularization can be applied 

to the datasets to improve the performance. In addition, cross validation concept and optimization algorithms with 

different learning are also the way forward in solving the over-fitting and minimizing information loss 

respectively. We equally recommend availability and use of real-World datasets from financial institutions for 

model training, testing and validation.  
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