

39 | P a g e

ISSN:

3067-266X

Impact Factor: 5.00

LOGAN

LOGAN JOURNAL OF COMPUTER

SCIENCE, ARTIFICIAL INTELLIGENCE,

AND ROBOTICS.
12(1) 2025 LJCSAIR

 https://loganjournals.online Volume 12 Issue 1

Emeka U. Chukwuma

Department of Computer Science, Federal Polytechnic Oko, Anambra State, Nigeria

DOI: https://doi.org/10.5281/zenodo.15828597

Introduction

Money laundering has become a pervasive and insidious crime that presents a significant threat to Nigeria’s

financial sector, with far-reaching consequences for economic stability, national security, and global financial

integrity (Canhoto, 2021). The Financial Action Task Force (FATF) estimates that up to 5% of global GDP is

laundered annually, with developing economies like Nigeria disproportionately affected (FATF, 2020).

LEVERAGING MACHINE LEARNING FOR PROACTIVE

MONEY LAUNDERING DETECTION IN NIGERIA

Abstract: This paper examined the effectiveness of machine learning (ML) Models for the ongoing war

against money laundering in Nigeria. In advanced economies, the rise of machine learning has revolutionized

the way financial institutions and governments combat illegal financial activities emanating from mobile

money transactions. By using advanced algorithms and data analysis techniques, machine learning has proven

to be an effective tool in identifying suspicious financial transactions and patterns, thereby helping authorities

take proactive rather than reactive measures in preventing fraudulent transactions. This study aimed to address

the research gap in the use of reactive approach by Nigeria government, where the prevalence of money

laundering has risen in recent years, and explored how ML techniques can be utilized to enhance the country’s

efforts in combating this financial crime. The datasets for this study were obtained from Kaggle website that

contains fraudulent transactions on money laundering, which was used to train, validate and test the ML

models. Logistic regression (LR) and Support Vector Machine (SVM) were used as the baseline models while

Sparse Autoencoder (SAE) neural network was used for feature learning and dimensionality reduction. The

results indicate that LR classifier still showed reasonable performance but did not outperform the other

models. Among all the measures, SVM exhibited outstanding performance, with over 90% prediction

accuracy. The amount of money transferred and location of transactions emerged as top features for predicting

money laundering transactions in online money transfers. These findings suggest that further research is

needed to enhance the logistic regression model, and sparse autoencoder neural network should be explored

as potential tool for law enforcement agencies and Nigeria financial Institutions to proactively learn

representative data from high dimensional datasets as quality of data improves performance of predictive

models.

Keywords: Machine Learning, Revolution, Money Laundering, Algorithms, Artificial Intelligence

40 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

In Nigeria, Government approach to the fight against money laundering largely hinges on the law enforcement

and CBN regulations. This simply implies that Nigeria Government’s efforts in combating money laundering

have primarily focused on traditional methods such as law enforcement by Economic and Financial Crime

Commission (EFCC) and regulatory actions by the Central Bank of Nigeria (CBN). This approach has been more

of reactive than proactive, often involving lengthy litigation period. The commercial Banks which are under the

obligation of CBN policies on money laundering to furnish EFCC with information needed for investigation and

conviction of money laundering offenders rely on traditional anti-money laundering (AML) methods known as

rule-based expert systems. However, due to the explosive growth of electronic transaction information generated

through online payment channels (Jipeng et al., 2021), this traditional rule-based systems have proven inadequate

in detecting and preventing these complex financial crimes (Shi et al., 2019).

To address this challenge, researchers have explored innovative solutions, including machine learning, data

analytics and deep learning approaches (Wan et al., 2019; Abavisani & Patel, 2019; Zamini et al., 2019). Machine

learning (ML), a subset of artificial intelligence, has demonstrated remarkable potentials in detecting and

preventing financial crimes, including money laundering (Hanbing., 2021). For example, Honlam (2022) agreed

that a number of ML methods have been developed to learn patterns in credit card frauds, and that these ML

methods usually depend on sophisticated feature engineering to improve their performances.

By leveraging ML algorithms and data analytics, financial institutions can improve detection accuracy, reduce

false positives, and enhance customer due diligence (Jorge et al., 2024). Research has equally highlighted the

benefits of machine learning in AML, including improved detection of suspicious transactions (Canhoto et al.,

2021), enhanced risk assessment (Shi et al., 2019), and reduced compliance cost (Anubha, et al., 2022)

In Nigeria, the need for effective AML solutions is particularly pressing. The country’s financial system is

characterized by a high volume of cash transactions, limited financial inclusion, and inadequate AML

infrastructure (Omri, 2021). While the Nigeria government has implemented various AML measures, including

the money laundering (prohibition) Act of 2011 and the Central

Bank of Nigeria’s AML/CFT policy, challenges still persist (CBN, 2020).

This study aims to contribute to the development of effective machine learning-based AML solutions in Nigeria,

building on the existing literature and exploring innovative approaches rather than reactive one to enhance

financial security and combat economic crime. The datasets for this study were obtained from Kaggle website

that contains fraudulent transactions on money laundering, which was used to train, validate and test the ML

models. Logistic regression (LR) and SVM were used as the baseline model and sparse autoencoder (SAE) neural

network was deployed for representative learning. We combined supervised and unsupervised learning

approaches.

2.1 Related Works

In recent time, autoencoder has found significant applications in various unsupervised learning tasks in several

application areas such as heart disease prediction and fraud detection. In this regard, (Ibomoiye et al., 2020; Ali

et al. 2021) proposed a method that combined Support Vector Machine (SVM) and Sparse Auto-encoder (SAE)

for money laundering detection. The rational there was that the classical SVM has limitations on large scale

applications; hence, the need to use a sparse auto-encoder to improve its performance. The authors employed

multiple layers of sparse autoencoder to perform feature learning and used the SVM for classification, thereby

improving the performance of the SVM in handling large scale datasets. The combined model resulted in 80%

accuracy in anti-money laundering detection. In a related study (Moussavi & Jamshidi, 2019), proposed a method

to perform feature learning using sparse auto-encoder to improve the performance of logistic regression model

on real-valued time series data. The architecture consists of different layers of sparse autoencoder. The aim of the

41 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

research was to enhance vehicular traffic flow forecasting. However, in an attempt to increase the accuracy of the

sparse autoencoder, they proposed a cascaded model which leverages on the combination of low- and high-level

features, and a stochastic gradient descent algorithm was employed as the regression method.

Also, in Abavisani and Patel (2019), a sparse representation-based classification method was proposed using a

transductive deep learning based formulation. The network comprises of a fully connected layer and a

convolutional autoencoder. The fully connected layer is placed between the encoder and decoder, and its function

is to find the sparse representation, whereas the autoencoder network learns effective deep features for

classification. When the estimated sparse codes are used for classification of some datasets, the proposed method

showed improved performance.

In Wan et al. (2019), an approach was proposed to derive a formulation that effectively determines the sparse

hyper-parameter in sparse auto-encoder, in addition to deriving the relationship between the average activation of

hidden units and sparse hyper-parameter. The authors conducted two experiments and they obtained good

performance. Another connected study on a novel method equally shows where a sparse autoencoder is used for

automatic modulation classification (Ibomolye et al., 2020; Ali & Yangyu, 2019). The network was trained using

a non-negativity constraint algorithm. Experimental results show that the autoencoder with the non-negativity

constraint enhances the sparsely and minimizes the reconstruction error as compared to the traditional sparse

autoencoder.

In a nutshell, the above related studies conclude that a combination of supervised and unsupervised approach to

machine learning applications have the potentials of improving models performance accuracies. However, while

only few studies have deployed sparse autoencoder to learn representative variables, non has experimented with

the three models: LR, SVM and SAE (SAESVM-LR). Unsupervised ML method, compared to the supervised,

has the advantage of detecting unseen relationships between variables and finding representative features,

enabling it to replace feature engineering. Therefore, processing the raw data with unsupervised ML may generate

useful and representative variables. Having representative variables is helpful for many supervised ML methods.

Previously, Principal Component Analysis (PCA), an unsupervised approach, was commonly used for feature

engineering task. But, PCA has two drawbacks. First, it can only detect linear relationships between variables.

Second, it can only generate low dimensional variable space, leading to loss of some information and limiting the

ability of the model to learn representative variables. Thus, it performs poorly when the relationship is non-linear,

or the number of variables is of high dimensional. This is where Sparse Autoencoder comes in to address this

knowledge gap and ensure quality data are used for model training and evaluation. Loss of information, overfitting

challenges, and false positives are greatly minimized, leading to an improved model performance through

deployment of Adaptive Moment Estimator (Adam) Optimization algorithm.

2.2 Data Collection

Due to challenges in gathering internal or real World data from financial institutions or buying from vendors, we

relied on money laundering datasets collected from a reliable open source, Kaggle website. The collected dateset

contains money laundering transactions, which occurred between January and June 2023. In addition, the dateset

is highly imbalanced with 568,630 transactions, containing 380,982 negative examples (non-fraudulent). The

latter accounts for about 67% of all data, while the remaining 187,648 are classified as positive examples (frauds)

accounting for 33% of the total datasets (568630).

For want of space, only the first 6 rows of the datasets are shown in table 1. We have a total of 32 transactions

data and all variables are numerical. An extraction of 6 rows and 10 columns (features) of the money laundering

datasets are presented in table 1 below.

42 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

Table 1 First 6 rows of the money laundering Dataset

id V1 V2 V3 V4 V5 V6 V7 amount class

0 -0.26064

 -0.46964

 2.49626

 -0.083723

0.12968 0.73289

 0.51901

 17982.1

 0

1 0.98509

 -0.35604

 0.55805

 -0.429653

0.27714 0.428604

 0.40646

 6531.37

 0

2 -0.26027

 -0.94938

 1.72853

 -0.457986

0.07406 1.419481

 0.74351

 2513.54

 0

3 -0.15215

 -0.50895

 1.74684

 -1.090177

0.24948 1.143312

 0.51826

 5384.44

 1

4 -0.20681

 -0.16528

 1.52705

 -0.448292

43 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

0.10612 0.530548

 0.65884

 14278.9

 1

0

5 0.025302

 -0.14051

 1.19113

 -0.707978

0.43049 0.458973

 0.61104

 6901.49

2.2.1 Data preprocessing

This is the second and a crucial step in the machine learning method. It involves cleaning the data (removing

duplicates, correcting errors), handling missing data (either by removing it or filling it in), and normalizing the

data (scaling the data to a standard format). This approach improves the quality of collected data and ensures that

proposed AML machine learning model can interpret it correctly. This procedure can significantly improve the

accuracy of the proposed model and enhance the performance of the model for AML detection.

2.2.2 Data Balancing

 There are many ways of handling imbalanced data which are distinguished into data and level algorithms. Among

these techniques, the preferred one is the algorithm method which involves the use of a confusion matrix and

balanced accuracy metrics to modify the dataset, re-balance the imbalanced data, and remove noise between two

classes before using the data in the algorithms. In this regard, the datasets (table 1) were divided into 75% training/

25 % testing and 70% training /30% testing for all the supervised Learning algorithms being considered in this

study. The algorithms are Logistic regression (LR) and Support Vector Machine (SVM).

2.3 Methodology

 Sparse auto-encoder (SAE), logistic regression and support vector machine were considered in this study. SAE

is an unsupervised ML approach for automatic feature engineering tasks. While the auto-encoder is considered

for feature extraction, Logistic regression and support vector machines were used to train, validate and make

prediction based on the pre-processed datasets.

2.3.1 Sparse Autoencoder

The SAE consists of two parts: encoder and decoder (figure1). The encoder transforms input layer into encode

layer, then the decoder transforms encode layer into output layer. The loss function of SAE is the reconstruction

error between the input layer and the output layer (equation 4). By minimizing this loss function, SAE learns

representative features in the encode layer. Because the dimension of the encode layer is smaller than that of the

input layer, the learned representation should be the most important part of the input data. Otherwise, the output

derived from the encode layer will differ from the input data.

In addition, Sparse Auto-encoder further applies sparsely constraints to prevent over-fitting (equation 6). That is,

the loss function of SAE adds on a penalty term proportional to magnitude of the encode layer. By using activity

regularization, SAE limits the number of active neurons in the encode layer, thus preventing the neural network

from simply copying output from input (Honlam, 2022; Hanbing, 2021; Ibomoiye, 2020).

44 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

z the new representation.

Z = h (wx +b) [1] = g(z +) [2]

In the above formulation, h is the activation function for the hidden layer neurons and g is for the output layer

neurons, w and are weight matrices, b and are respectively the encoder and decoder bias vectors. In this paper,

the sigmoid activation function is utilized, which is shown in Equation (3) instead of the others such as ReLU,

Tanh etc.

 f (h)= 𝟏 +𝟏𝒆−𝒉 = 𝟏 +𝒆−(
𝟏𝒃𝒐+𝒃𝟏𝒙) [3]

As we move forwards through more layers, the level of abstraction increases. Let’s now analyse the activation

functions in little more detail. Previously our activation was just a simple function that outputs 0 or 1 from the

relation Z= wx + b

Unfortunately, there is a pretty dramatic function since small changes such as (0.1, 0.2,-1.0 etc.) are not reflected,

So, it would be nice if we have a more dynamic function which combines sigmoid and activation functions (

Sigmoid function+ activation function). So we can integrate sigmoid function with activation function to handle

not just 0 and 1 output but as well as small changes. We can replace h in equation 3 with z. So we have:

f(h) = f(x) = 𝟏 +𝟏𝒆−𝒉 = 𝟏 +
𝟏𝒆−𝒛 = 𝟏 +𝒆−𝟏(𝒘𝒙 +𝒃) [4]

Recall that z = wx + b from equation 1

The reconstruction loss (error) function E between the input x and reconstructed input uses the mean squared

error (MSE) function shown in Equation (4).

N1 iN=1 xi + x'i2 [5]

E =

Note: = x’

N represents the number of input samples (in this case 32). However, in this research it is important to express

that a sparse auto-encoder is utilized to obtain an effective low-level representation of the input data under sparse

constraints. Hence, sparsity is introduced by including regularization to the loss function. Let i be the average

activation of neurons in the hidden layer.
i = 1 nzi (xj) [6]

 n j = 1

From Equation (5) i, n, and j represents the neuron, total number of training samples, and the training sample

respectively. The average activation i approaches p that is a constant close to zero. Hence, the Kullback-Leibler

(KL) divergence is used to add the regularizer to the loss function. The KL divergence is introduced to achieve

sparsity.

Figure 1 Sparse Autoencoder work flow (Jia n et al., 2019)

The encoder maps the input to a new representation. This new representation is then decoded at

the output to reconstruct the input according to Equations (1) and (2), where x is the input and

45 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

 sparsity = d= p log(pp') + (1−P)log(11−−pp'

[7])

i 1

Note: i = P’

From Equation (6) d represents the total number of neurons in a layer, whereas p is the sparsity proportion, which

is the needed activation value. Therefore, the SAE error function now comprises of the mean square error and the

regularization terms. Furthermore, in order to control the weights and prevent over-fitting, L2 regularization

(L2R) is introduced in the loss function.

 L N K

 weights = 12 . . (wij)(I) [8]

 i j i

L and K represent the number of hidden layers and number of features in a sample, respectively

(Mienye et al., 2020; Zia & Rehman, 2019). The weight attenuation units as seen in Equation (8) is then included.

After adding the various regularization terms, i.e. Equations (6) and (7) into Equation (4) which is the

reconstruction error E, our loss function becomes:

E = 1 N K (xkn − x' kn))2 + * weights + * sparsity [9]

N n=1 K =1

There are three optimization parameters here: λ which is the coefficient for L2R and it prevents over-fitting, the

second parameter is β, the sparsity regularization parameter, and it sets the sparsity penalty term. Lastly, p is the

sparsity proportion which controls the needed sparsity level. The optimization parameter values for λ, β, and p

are 0.0001, 0.01, and 0.5 respectively.

2.3.2 Adaptive Moment Estimator (Adam) Optimizer

Furthermore, in order to train a robust SAE, the Adam algorithm is used in place of the Adaptive Gradient

(AdaGrad) algorithm, or Root-mean-square propagation algorithm proposed in 2012. The Adam optimization

algorithm surfaced in 2014. The choice of this algorithm offers us the opportunity to use a different learning rate

for various parameters and to come up with dynamic adjustment of various parameters by obtaining the gradient

first-order moment estimate, mt, and second-order moment estimate, vt, shown in Equations (10)– (12).

Gradient Computation:

For every iteration t, Adam computes gradient gt. This gradient is the derivative of the objective function

concerning the current parameter t.

gt = ft(t −1) [10]

Where:

gt represents the gradient at iteration t , denotes the gradient for parameter , and ft(t −1) is the objective function

being optimized, evaluated at the parameter values from the previous iteration t - 1.

With the gradient computed in equation (10), the next step will be to update the first-moment estimator (Mt),

which stores the moving average of the gradient. This update simply combines the previous value of Mt and the

new gradient, weighted by parameters 1 and 1- 1 respectively. Mt = 1.Mt −1+ (1− 1).gt [11]

Where:



Mt is the first-moment vector at time step t

46 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1



1 is the exponential decay rate for the first-moment estimates (commonly set to be around

0.9)



gt is the gradient at time step t

Similarly, the second-moment vector Vt is also updated. This vector gives an estimate of variance (or

unpredictability) of the gradient; therefore, it stores the squared gradients that are accumulated. Just like the first

-moment (Mt), this is also a weighted combination, but of the past squared gradient and current gradient as shown

in equation (12).

Vt = 2.Vt −1+(1− 2).gt2 [12]

Where:

Vt is the second moment vector at time step t, 2 is the exponential decay rate for the second moment estimates

(commonly set to around 0.999)

The need to calculate the correct bias in the moments is also essential, Being that mt and Vt are initialized to 0,

they are biased towards 0, especially during the initial time steps. Adam deals with this bias by correcting the

vector using decay rate, which is 1 for Mt and 2 for Vt. This correction is vital as it ensures that the moving

averages are more represented, particular in the early stage of training. Equations (13) and (14) show the

mathematical expressions for computing correct bias.

M’t = Mt [13]

1− 1t

vt

V’t = t [14]

1− 2

Finally, Adam updates model parameters using equation (15). This is the step where the actual optimization

occurs, moving the parameters in the direction that minimizes the loss function. Parameter update makes use of

adaptive learning rates computed in the previous equations t + 1 = t - .M 't [15]

V't+

Where:



t + 1 represents parameters after the update



t represents the current parameters before the update



 is the learning rate, which is an important hyper-parameter that determines the size of step taken towards

minimizing the loss function



M’t is the bias-corrected first moment estimate of the gradient



V’t is bias corrected second moment estimate of the gradient



(Epsilon) is a small scalar (e -8) added to prevent division by zero and maintain numerical stability.

47 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

2.3.2 Logistic Regression

In this section, we will explore logistic regression model to train, test, evaluate and predict fraudulent behaviour

from reconstructed pre-processed data using dimensionality reduction techniques of SAE. Logistic regression is

similar to linear regression, but the difference is that it produces a curve while linear regression produces a straight

line. Based on the usage of one or more predictors or independent variables, logistic regression generates logistic

curves that depict the values between zero and one (Omri, 2021). There are many different forms of logistic

regression models, including binary, multiple, and binomial logistic models (Omri, 2021). The binary logistic

regression model is used to predict the likelihood of a binary response (0 or 1) based on one or more factors. The

equation below represents the logistic regression in mathematical form.

 Figure 2: Source (Omri, 2021)

The contrast between linear regression and logistic regression is seen in this graph, where logistic regression

depicts a curve and linear regression depicts a straight line (Omri, 2021; Wright, 1995).

2.3.3 Support Vector Machine

Support Vector Machine (SVM) is one of the most popular Supervised Learning algorithms, which is used for

Classification as well as Regression problems. It is primarily used for classification problems in machine

Learning. SVM maps the variables into a high dimensional space using a kernel function, which then finds a

hyperplane to maximize the gap between support vectors and to minimize the error of miscalculation

simultaneously (Pisner & Schnyer, 2020). Hyperplane is a space whose dimension is lower than the mapped

space. Support vectors are points close to the Hyperplane. On one hand, SVM tries to maximize the margin

between support vectors to increase the generality of the model. On the other hand, SVM minimizes the

misclassification to prevent under-fitting. By choosing an appropriate C value, it finds a balance in this bias-

variance tradeoff. In this research, the SVM algorithm was implemented using the Sklearn package in python.

The kernel was ‘rbf’ and the C value was 1. Consider the below diagram in which two different categories are

classified using a decision boundary or hyperplane:

48 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

Figure 3: Support Vector Machine (Omri, 2021)

2.4 Implementation

The implementation was done by importing relevant python programming language libraries such as Scikit Learn

(Sklearn), pandas, NumPy, Tensor flow, Matplotlib, seaborn, and Keras. This was done using the Jupiter

application programming Interface. The Scikit learn was used to train the Logistic regression and Support Vector

Machine Models, splitting the given dataset into training and test datasets, usually in an imbalanced manner. After

training the Models, they were able to classify or predict new or unseen datasets as represented in table 2 and 3.

2.5 Results and Discussions

The performance evaluation of the trained datasets for the prediction of unseen or new input is done with a

confusion matrix to determine how well the models have performed. The choice of a confusion matrix is based

on imbalanced datasets. The data-set was evaluated with the 2 algorithms to obtain the numbers of true positive

(TP), True Negative (TN), False positive (FP), and False Negative (FN). True positive means that positive

examples are correctly assigned to the positive class. In this dataset, it means fraudulent transactions. True

negative (TN) refers to the negative examples correctly assigned to the negative class, meaning no fraudulent

transactions occurred. False positive (FP) means that the algorithm incorrectly considers negative examples as

positive examples. That is predicting non fraudulent transactions as fraudulent. In other words, when a sample

transaction is non fraudulent, the algorithm mistakenly flags it as an abnormal transaction. False negative (FN) is

a situation where positive examples are wrongly allocated to a negative class. It means the classified transaction

is legitimate; however, the algorithm misunderstood this as an illegitimate transaction. The confusion matrix for

the data-set is shown in the Tables below for different splits of training and testing datasets.

Table 2: Confusion Matrix For Fraud Detection (75% training,25%testing)

 Logistics Regression Support Vector Machine

Predicted no

Predicted yes

N =

142158

Predicted no

Predicted yes

N = 142158

TN 47127 FN

23896

Actual no

TN 71020 FN

3

Actual no

49 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

FP 5998 TP

65137

Actual Yes

FP 109 TP

71026

Actual Yes

Table 3: Confusion Matrix For Fraud Detection (70% training,30%testing)

 Logistics Regression Support Vector Machine

Predicted no

Predicted yes

N =

170589

Predicted no

Predicted yes

N = 170589

TN

85060

FN 89

Actual no

TN

85124

FN 25

Actual no

FP 166 TP

85274

 FP 34 TP

85406

Actual Yes

 Actual Yes

The first model could have been judged by its overall accuracy, which works well for most data sets splits.

However, the accuracy might be insufficient to reflect the performance of a model in the imbalanced dataset. So,

balanced accuracy is used in this case to determine whether an algorithm has performed well or not.

Mathematically, it is represented as:

Balanced Accuracy = 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚+𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚

𝟐

Balanced Accuracy = 𝟏(𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔) + (𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔)

 𝟐 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

1 𝑻𝑷 𝑻𝑵

→ Balanced Accuracy = (+)

2 𝑻𝑷+𝑭𝑷

 𝑻𝑵+𝑭𝑵

In the above formula, TP is true positive, and FP is false positive. TN is True Negative, and FN is False Negative.

The higher the balanced accuracy is, the more the classification is put into the right place. The balanced accuracy

analysis in terms of the predictive probabilities of each model is shown in Table 4.

Here, we found that the proposed AML model (SAE-SV M-LR) with 0.89 predictive probability or 89% balanced

accuracy outperformed SAE-SV M (Honlam, 2022) which has 80% accuracy when training and testing datasets

is split to 75% and 25% respectively. Similarly, a better performance prediction holds with a dataset split of 70%/

30%, which shows an improvement prediction of the proposed model to 99%.

Table 4: comparison SAE-LR-SVM and SAE-SVM

Dataset splits

LR

SVM

SAE-SVM-LR (Avg of LR and SVM)

SAE-SVM

75%/25% 0.78 0.99 0.89 0.80

70%/30% 0.99 0.99 0.99 0.89

47127:

TN

23896

FN

:

5998: FP 65137:

TP

50 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

Conclusion and Recommendation

 ML is effective in the area of money laundering Detection (MLD). However, its sterling performance relies

heavily on sophisticated feature engineering, which is expensive to scale. In previous studies, few attempts have

been made to combine unsupervised ML with supervised ML. In this work, the proposed model combined SAE,

LR and SVM. In the first step, the model used SAE to perform the pr-processing task of data reconstruction. As

a result, SAE extracted representative features in its encode layer. Then the model passed representative features

to the LR and SVM models. This work used the MLD datasets from Kaggle as input to the model and training

and model evaluation carried out using the proposed model. The result showed that using SAE to extract

representative features improved the performance of SVM. This SAE-LR-SV M method achieves 89% and 99%

balanced accuracy on two different data-set splits for training and testing phases, compared to 80% accuracy

obtained from SAE-SV M method proposed by (Honlam, 2022). In addition, the SAE-LR-SV M model

outperforms other auto-encoder-based models regarding the balanced accuracy (Zamini et al., 2019). This is a

remarkable performance because no model has been able to have 100% prediction due to several factors such

information loss, imbalanced dataset, overfitting, quality and quantity of dataset to mention but few. Overall,

Machine Learning algorithms can be successfully used for financial fraud transaction detection. In the future, this

study will further fine-tune the SAE model and try different classification methods besides SVM and LR. Also,

this research will be conducted on other MLD datasets to further investigate how well SAE can encode

complicated transactions.

Recommendations

To reduce the over-fitting issue in the training Logistic Regression, Lasso, and Ridge regularization can be applied

to the datasets to improve the performance. In addition, cross validation concept and optimization algorithms with

different learning are also the way forward in solving the over-fitting and minimizing information loss

respectively. We equally recommend availability and use of real-World datasets from financial institutions for

model training, testing and validation.

References

Abavisani, M., & Patel, V. M. (2019). Deep sparse representation-based classification. IEEE Signal Processing

Letters, 26(6), 48–52. https://doi.org/10.1109/LSP.2019.2913022

Albanian, A. (2019). Assessing the introduction of anti-money laundering regulation on bank stock valuation:

An empirical analysis. Journal of Money Laundering Control, 18(1), 76-88.

https://doi.org/10.1108/JMLC.2018.00

Ali, A., & Yangyu, F. (2019). Automatic modulation classification using deep learning based on sparse

autoencoder with non-negative constraints. IEEE Signal Processing Letters, 1625-1630.

https://doi.org/10.1109/LSP.2017.2752459

Anubha, P., Alekhya, B., Shiv, M., & Deepak, B. (2022). Adversarial fraud generation for improved detection.

3rd ACM International Conference on AI, France, New York, USA. https://doi.org/10.3533271/3561723

Archana, P., & Mangu, N. (2019). Credit card fraud detection using XGBoost for imbalanced dataset. Fifteenth

International Conference on Contemporary Computing, August 03-05, Noida, India, ACM, New York,

USA. https://doi.org/10.1145/3607947

Canhoto, A. I. (2021). Leveraging machine learning in the global fight against money laundering and terrorism

financing: An affordances perspective. Journal of Business Research, 24(3), 14-28.

https://doi.org/10.1109/LSP.2019.2913022
https://doi.org/10.1108/JMLC.2018.00
https://doi.org/10.1109/LSP.2017.2752459
https://doi.org/10.3533271/3561723
https://doi.org/10.1145/3607947

51 | P a g e

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

 https://loganjournals.online Volume 12 Issue 1

FATF. (2020). History of Financial Action Task Force. Retrieved July 26, 2024, from https://www.fatf-

gafi.org/about/historyoffatf/#d.en.3157

Hanbing, Z. (2021). Analysis of best sampling strategy in credit card fraud detection using machine learning.

6th International Conference on Intelligent Information Technology, February 25-28, Hochi Minh,

Vietnam. ACM, New York, USA. https://doi.org/10.1145/3460179.3460188

Honlam, L. (2022). Credit card fraud detection based on a combination of sparse autoencoder and support

vector machine. 6th International Conference on Electronic Information Technology and Computer

Engineering (EITCE), October 21-23, Xiamen, China. ACM, New York, NY, USA.

https://doi.org/10.1145/35734

Ibomoiye, D. M., Yanxia, S., & Zhenghui, W. (2020). Improved sparse autoencoder-based artificial neural

network approach for prediction of heart disease. Journal of Information in Medicine Unlocked, 5(2),

80-89. https://doi.org/10.1016/j.imu

Jian, S., Yin, L., Charley, C., Jihae, L., Xin, L., & Zhongping, Z. (2020). FDHelper: Assist unsupervised fraud

detection experts with interactive feature selection and evaluation. Proceedings of China Conference on

Human Factors in Computing Systems, April 22-24, 1-12. https://doi.org/10.1145/331831/3376140

Jipeng, C., Chungang, Y., & Cheng, W. (2021). Learning transaction cohesiveness for online payment fraud

detection. ACM Conference on Computing and Data Science (CONFCDS), January 28-30, Stanford,

CA, USA, New York, NY, USA. https://doi.org/10.1145/3448734.3450489

Jorge, F. M. P., Jorge, G., Dandi, B. L., Jorge, A. R. M., & Moises, M. R. A. (2024). Fraud transaction detection

for anti-money laundering systems based on deep learning. Journal of Emerging Computer Techniques,

12(31), 29-34. https://doi.org/10.57020/JECT.1428.46

Moussavi, K. A., & Jamshidi, M. (2019). Conducting a deep regression model utilizing cascaded sparse

autoencoder and stochastic gradient descent. 15th IEEE International Conference on Machine Learning

and Applications. https://doi.org/10.1109/ICMLA.2016.0096

Omri, R. (2020). Applying supervised machine learning algorithms for fraud detection in anti-money

laundering. Journal of Modern Issues in Business Research, 1(1), 441-452.

Shi, Y., Lei, J., Yin, Y., Cao, K., Li, Y., & Chang, C. I. (2019). Discriminative feature learning with distance-

constrained stacked detection. GeoScience and Remote Sensing Letters IEEE, 16(9), 14-26.

https://doi.org/10.1109/LGRS.2019.2901019

Wan, Z., He, H., & Tang, B. (2019). A generative model for sparse hyper-parameter determination. IEEE

Transactions on Big Data, 4(1), 2-10. https://doi.org/10.1109/TBDATA.2017.2689790

Zamini, M., & Gholamali, M. (2019). Credit card fraud detection using autoencoder-based clustering. 9th

International Symposium on Telecommunication (IST), IEEE.

https://www.fatf-gafi.org/about/historyoffatf/#d.en.3157
https://www.fatf-gafi.org/about/historyoffatf/#d.en.3157
https://doi.org/10.1145/3460179.3460188
https://doi.org/10.1145/35734
https://doi.org/10.1016/j.imu
https://doi.org/10.1145/331831/3376140
https://doi.org/10.1145/3448734.3450489
https://doi.org/10.57020/JECT.1428.46
https://doi.org/10.1109/ICMLA.2016.0096
https://doi.org/10.1109/LGRS.2019.2901019
https://doi.org/10.1109/TBDATA.2017.2689790

