Impact Factor: 5.00

LOGAN JOURNAL OF COMPUTER
SCIENCE, ARTIFICIAL INTELLIGENCE,
AND ROBOTICS.

ISSN:
3067-266X

7\

(

. T

12(1) 2025 LICSAIR

LEVERAGING MACHINE LEARNING FOR PROACTIVE
MONEY LAUNDERING DETECTION IN NIGERIA

Emeka U. Chukwuma
Department of Computer Science, Federal Polytechnic Oko, Anambra State, Nigeria
DOI: https://doi.org/10.5281/zenodo.15828597

Abstract: This paper examined the effectiveness of machine learning (ML) Models for the ongoing war
against money laundering in Nigeria. In advanced economies, the rise of machine learning has revolutionized
the way financial institutions and governments combat illegal financial activities emanating from mobile
money transactions. By using advanced algorithms and data analysis techniques, machine learning has proven
to be an effective tool in identifying suspicious financial transactions and patterns, thereby helping authorities
take proactive rather than reactive measures in preventing fraudulent transactions. This study aimed to address
the research gap in the use of reactive approach by Nigeria government, where the prevalence of money
laundering has risen in recent years, and explored how ML techniques can be utilized to enhance the country’s
efforts in combating this financial crime. The datasets for this study were obtained from Kaggle website that
contains fraudulent transactions on money laundering, which was used to train, validate and test the ML
models. Logistic regression (LR) and Support Vector Machine (SVM) were used as the baseline models while
Sparse Autoencoder (SAE) neural network was used for feature learning and dimensionality reduction. The
results indicate that LR classifier still showed reasonable performance but did not outperform the other
models. Among all the measures, SVM exhibited outstanding performance, with over 90% prediction
accuracy. The amount of money transferred and location of transactions emerged as top features for predicting
money laundering transactions in online money transfers. These findings suggest that further research is
needed to enhance the logistic regression model, and sparse autoencoder neural network should be explored
as potential tool for law enforcement agencies and Nigeria financial Institutions to proactively learn
representative data from high dimensional datasets as quality of data improves performance of predictive
models.

Keywords: Machine Learning, Revolution, Money Laundering, Algorithms, Artificial Intelligence

Introduction

Money laundering has become a pervasive and insidious crime that presents a significant threat to Nigeria’s
financial sector, with far-reaching consequences for economic stability, national security, and global financial
integrity (Canhoto, 2021). The Financial Action Task Force (FATF) estimates that up to 5% of global GDP is
laundered annually, with developing economies like Nigeria disproportionately affected (FATF, 2020).

https://loganjournals.online

Volume 12 Issue 1 |

39|Page

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

In Nigeria, Government approach to the fight against money laundering largely hinges on the law enforcement
and CBN regulations. This simply implies that Nigeria Government’s efforts in combating money laundering
have primarily focused on traditional methods such as law enforcement by Economic and Financial Crime
Commission (EFCC) and regulatory actions by the Central Bank of Nigeria (CBN). This approach has been more
of reactive than proactive, often involving lengthy litigation period. The commercial Banks which are under the
obligation of CBN policies on money laundering to furnish EFCC with information needed for investigation and
conviction of money laundering offenders rely on traditional anti-money laundering (AML) methods known as
rule-based expert systems. However, due to the explosive growth of electronic transaction information generated
through online payment channels (Jipeng et al., 2021), this traditional rule-based systems have proven inadequate
in detecting and preventing these complex financial crimes (Shi et al., 2019).

To address this challenge, researchers have explored innovative solutions, including machine learning, data
analytics and deep learning approaches (Wan et al., 2019; Abavisani & Patel, 2019; Zamini et al., 2019). Machine
learning (ML), a subset of artificial intelligence, has demonstrated remarkable potentials in detecting and
preventing financial crimes, including money laundering (Hanbing., 2021). For example, Honlam (2022) agreed
that a number of ML methods have been developed to learn patterns in credit card frauds, and that these ML
methods usually depend on sophisticated feature engineering to improve their performances.

By leveraging ML algorithms and data analytics, financial institutions can improve detection accuracy, reduce
false positives, and enhance customer due diligence (Jorge et al., 2024). Research has equally highlighted the
benefits of machine learning in AML, including improved detection of suspicious transactions (Canhoto et al.,
2021), enhanced risk assessment (Shi et al., 2019), and reduced compliance cost (Anubha, et al., 2022)

In Nigeria, the need for effective AML solutions is particularly pressing. The country’s financial system is
characterized by a high volume of cash transactions, limited financial inclusion, and inadequate AML
infrastructure (Omri, 2021). While the Nigeria government has implemented various AML measures, including
the money laundering (prohibition) Act of 2011 and the Central

Bank of Nigeria’s AML/CFT policy, challenges still persist (CBN, 2020).

This study aims to contribute to the development of effective machine learning-based AML solutions in Nigeria,
building on the existing literature and exploring innovative approaches rather than reactive one to enhance
financial security and combat economic crime. The datasets for this study were obtained from Kaggle website
that contains fraudulent transactions on money laundering, which was used to train, validate and test the ML
models. Logistic regression (LR) and SVM were used as the baseline model and sparse autoencoder (SAE) neural
network was deployed for representative learning. We combined supervised and unsupervised learning
approaches.

2.1 Related Works

In recent time, autoencoder has found significant applications in various unsupervised learning tasks in several
application areas such as heart disease prediction and fraud detection. In this regard, (Ibomoiye et al., 2020; Ali
et al. 2021) proposed a method that combined Support Vector Machine (SVM) and Sparse Auto-encoder (SAE)
for money laundering detection. The rational there was that the classical SVM has limitations on large scale
applications; hence, the need to use a sparse auto-encoder to improve its performance. The authors employed
multiple layers of sparse autoencoder to perform feature learning and used the SVM for classification, thereby
improving the performance of the SVM in handling large scale datasets. The combined model resulted in 80%
accuracy in anti-money laundering detection. In a related study (Moussavi & Jamshidi, 2019), proposed a method
to perform feature learning using sparse auto-encoder to improve the performance of logistic regression model
on real-valued time series data. The architecture consists of different layers of sparse autoencoder. The aim of the

40|Page

https://loganjournals.online | Volume 12 Issue 1 |

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

research was to enhance vehicular traffic flow forecasting. However, in an attempt to increase the accuracy of the
sparse autoencoder, they proposed a cascaded model which leverages on the combination of low- and high-level
features, and a stochastic gradient descent algorithm was employed as the regression method.

Also, in Abavisani and Patel (2019), a sparse representation-based classification method was proposed using a
transductive deep learning based formulation. The network comprises of a fully connected layer and a
convolutional autoencoder. The fully connected layer is placed between the encoder and decoder, and its function
is to find the sparse representation, whereas the autoencoder network learns effective deep features for
classification. When the estimated sparse codes are used for classification of some datasets, the proposed method
showed improved performance.

In Wan et al. (2019), an approach was proposed to derive a formulation that effectively determines the sparse
hyper-parameter in sparse auto-encoder, in addition to deriving the relationship between the average activation of
hidden units and sparse hyper-parameter. The authors conducted two experiments and they obtained good
performance. Another connected study on a novel method equally shows where a sparse autoencoder is used for
automatic modulation classification (Ibomolye et al., 2020; Ali & Yangyu, 2019). The network was trained using
a non-negativity constraint algorithm. Experimental results show that the autoencoder with the non-negativity
constraint enhances the sparsely and minimizes the reconstruction error as compared to the traditional sparse
autoencoder.

In a nutshell, the above related studies conclude that a combination of supervised and unsupervised approach to
machine learning applications have the potentials of improving models performance accuracies. However, while
only few studies have deployed sparse autoencoder to learn representative variables, non has experimented with
the three models: LR, SVM and SAE (SAESVM-LR). Unsupervised ML method, compared to the supervised,
has the advantage of detecting unseen relationships between variables and finding representative features,
enabling it to replace feature engineering. Therefore, processing the raw data with unsupervised ML may generate
useful and representative variables. Having representative variables is helpful for many supervised ML methods.
Previously, Principal Component Analysis (PCA), an unsupervised approach, was commonly used for feature
engineering task. But, PCA has two drawbacks. First, it can only detect linear relationships between variables.
Second, it can only generate low dimensional variable space, leading to loss of some information and limiting the
ability of the model to learn representative variables. Thus, it performs poorly when the relationship is non-linear,
or the number of variables is of high dimensional. This is where Sparse Autoencoder comes in to address this
knowledge gap and ensure quality data are used for model training and evaluation. Loss of information, overfitting
challenges, and false positives are greatly minimized, leading to an improved model performance through
deployment of Adaptive Moment Estimator (Adam) Optimization algorithm.

2.2 Data Collection

Due to challenges in gathering internal or real World data from financial institutions or buying from vendors, we
relied on money laundering datasets collected from a reliable open source, Kaggle website. The collected dateset
contains money laundering transactions, which occurred between January and June 2023. In addition, the dateset
is highly imbalanced with 568,630 transactions, containing 380,982 negative examples (non-fraudulent). The
latter accounts for about 67% of all data, while the remaining 187,648 are classified as positive examples (frauds)
accounting for 33% of the total datasets (568630).

For want of space, only the first 6 rows of the datasets are shown in table 1. We have a total of 32 transactions
data and all variables are numerical. An extraction of 6 rows and 10 columns (features) of the money laundering
datasets are presented in table 1 below.

https://loganjournals.online | Volume 12 Issue 1 | AfPage

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

Table 1 First 6 rows of the money laundering Dataset

id Vi1 V2 V3
0

0.12968

1

0.27714

2

0.07406

3

0.24948

4

V4

V5 A\

https://loganjournals.online

Volume 12 Issue 1 |

V7

amount

class

-0.26064
-0.46964
2.49626
-0.083723
0.73289
0.51901
17982.1

0

0.98509
-0.35604
0.55805
-0.429653
0.428604
0.40646
6531.37
0

-0.26027
-0.94938
1.72853
-0.457986
1.419481
0.74351
2513.54

0

-0.15215
-0.50895
1.74684
-1.090177
1.143312
0.51826
5384.44

1

-0.20681
-0.16528
1.52705
-0.448292

42|Page

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

0.10612 0.530548
0.65884
14278.9
1

5 0.025302
-0.14051
1.19113
-0.707978

0.43049 0.458973
0.61104
6901.49

2.2.1 Data preprocessing

This is the second and a crucial step in the machine learning method. It involves cleaning the data (removing
duplicates, correcting errors), handling missing data (either by removing it or filling it in), and normalizing the
data (scaling the data to a standard format). This approach improves the quality of collected data and ensures that
proposed AML machine learning model can interpret it correctly. This procedure can significantly improve the
accuracy of the proposed model and enhance the performance of the model for AML detection.

2.2.2 Data Balancing

There are many ways of handling imbalanced data which are distinguished into data and level algorithms. Among
these techniques, the preferred one is the algorithm method which involves the use of a confusion matrix and
balanced accuracy metrics to modify the dataset, re-balance the imbalanced data, and remove noise between two
classes before using the data in the algorithms. In this regard, the datasets (table 1) were divided into 75% training/
25 % testing and 70% training /30% testing for all the supervised Learning algorithms being considered in this
study. The algorithms are Logistic regression (LR) and Support Vector Machine (SVM).

2.3 Methodology

Sparse auto-encoder (SAE), logistic regression and support vector machine were considered in this study. SAE
is an unsupervised ML approach for automatic feature engineering tasks. While the auto-encoder is considered
for feature extraction, Logistic regression and support vector machines were used to train, validate and make
prediction based on the pre-processed datasets.

2.3.1 Sparse Autoencoder

The SAE consists of two parts: encoder and decoder (figurel). The encoder transforms input layer into encode
layer, then the decoder transforms encode layer into output layer. The loss function of SAE is the reconstruction
error between the input layer and the output layer (equation 4). By minimizing this loss function, SAE learns
representative features in the encode layer. Because the dimension of the encode layer is smaller than that of the
input layer, the learned representation should be the most important part of the input data. Otherwise, the output
derived from the encode layer will differ from the input data.

In addition, Sparse Auto-encoder further applies sparsely constraints to prevent over-fitting (equation 6). That is,
the loss function of SAE adds on a penalty term proportional to magnitude of the encode layer. By using activity
regularization, SAE limits the number of active neurons in the encode layer, thus preventing the neural network
from simply copying output from input (Honlam, 2022; Hanbing, 2021; Ibomoiye, 2020).

43|Page

https://loganjournals.online | Volume 12 Issue 1 |

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

<@ D
<@ @
Cod
Encoder powc Decoder o

Input Layer Higden Layer Ouput Laye

Figure 1 Sparse Autoencoder work flow (Jia n etal., 2019)
The encoder maps the input to a new representation. This new representation is then decoded at

the output to reconstruct the input x according to Equations (1) and (2), where x is the input and
z the new representation.
Z=h@+h [1] =g(z+) 2]

In the above formulation, h is the activation function for the hidden layer neurons and g is for the output layer
neurons, w and 10 are weight matrices, b and b are respectively the encoder and decoder bias vectors. In this paper,
the sigmoid activation function is utilized, which is shown in Equation (3) instead of the others such as ReLU,
Tanh etc.

f(h= 1+len = 1 te—(lbo+bix) [3]

As we move forwards through more layers, the level of abstraction increases. Let’s now analyse the activation
functions in little more detail. Previously our activation was just a simple function that outputs 0 or 1 from the
relation Z=wx +b

Unfortunately, there is a pretty dramatic function since small changes such as (0.1, 0.2,-1.0 etc.) are not reflected,
So, it would be nice if we have a more dynamic function which combines sigmoid and activation functions (
Sigmoid function+ activation function). So we can integrate sigmoid function with activation function to handle
not just 0 and 1 output but as well as small changes. We can replace h in equation 3 with z. So we have:

f(h) = f(X) = 1+le-p = 1+le—z = 1 +e_1(wx +b) [4]

Recall that z = wx + b from equation 1
The reconstruction loss (error) function E between the input x and reconstructed input uses the mean squared
error (MSE) function shown in Equation (4).

_ N'OiV=1 xi + x'i? [S]
E =
Note: =%’

N represents the number of input samples (in this case 32). However, in this research it is important to express
that a sparse auto-encoder is utilized to obtain an effective low-level representation of the input data under sparse
constraints. Hence, sparsity is introduced by including regularization to the loss function. Let ; be the average
activation of neurons in the hidden layer.
‘=0 () [6]

nj=1
From Equation (5) i, n, and j represents the neuron, total number of training samples, and the training sample
respectively. The average activation i approaches p that is a constant close to zero. Hence, the Kullback-Leibler
(KL) divergence is used to add the regularizer to the loss function. The KL divergence is introduced to achieve
sparsity.

https://loganjournals.online | Volume 12 Issue 1 | 44lPage

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

(1-P)log(11-—pp'

0wy = Bg= p — log(pp)) +
[71)

il

Note: 1=P’

From Equation (6) d represents the total number of neurons in a layer, whereas p is the sparsity proportion, which
is the needed activation value. Therefore, the SAE error function now comprises of the mean square error and the

regularization terms. Furthermore, in order to control the weights and prevent over-fitting, L2 regularization
(L2R) is introduced in the loss function.

L N K
[weights = l;m/. 0.0(wij)& [8]
i g

L and K represent the number of hidden layers and number of features in a sample, respectively

(Mienye et al., 2020; Zia & Rehman, 2019). The weight attenuation units as seen in Equation (8) is then included.
After adding the various regularization terms, i.e. Equations (6) and (7) into Equation (4) which is the
reconstruction error E, our loss function becomes:

E=__10N OK (xkn — x' kn))2 +00* Oweights +0* Osparsity [9]
Nn=1 K=1

There are three optimization parameters here: A which is the coefficient for L2R and it prevents over-fitting, the
second parameter is B, the sparsity regularization parameter, and it sets the sparsity penalty term. Lastly, p is the
sparsity proportion which controls the needed sparsity level. The optimization parameter values for A, B, and p
are 0.0001, 0.01, and 0.5 respectively.

2.3.2 Adaptive Moment Estimator (Adam) Optimizer

Furthermore, in order to train a robust SAE, the Adam algorithm is used in place of the Adaptive Gradient
(AdaGrad) algorithm, or Root-mean-square propagation algorithm proposed in 2012. The Adam optimization
algorithm surfaced in 2014. The choice of this algorithm offers us the opportunity to use a different learning rate
for various parameters and to come up with dynamic adjustment of various parameters by obtaining the gradient
first-order moment estimate, mt, and second-order moment estimate, vt, shown in Equations (10)— (12).
Gradient Computation:

For every iteration t, Adam computes gradient gt. This gradient is the derivative of the objective function
concerning the current parameter Ot.

gt =000 —1) [10]

Where:

gt represents the gradient at iteration t, I denotes the gradient for parameter , and ("~ is the objective function
being optimized, evaluated at the parameter values from the previous iteration t - 1.

With the gradient computed in equation (10), the next step will be to update the first-moment estimator (Mt),
which stores the moving average of the gradient. This update simply combines the previous value of Mt and the
new gradient, weighted by parameters 1 and 1- [J1 respectively. Mt = J1.Mt —1+ (1-01).gt [11]
Where:

g

Mt is the first-moment vector at time step t

45|Page

https://loganjournals.online | Volume 12 Issue 1 |

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

g

B1 is the exponential decay rate for the first-moment estimates (commonly set to be around

0.9)

g

gt is the gradient at time step t

Similarly, the second-moment vector Vi is also updated. This vector gives an estimate of variance (or
unpredictability) of the gradient; therefore, it stores the squared gradients that are accumulated. Just like the first
-moment (Mt), this is also a weighted combination, but of the past squared gradient and current gradient as shown
in equation (12).

Vi= 02Vt -1 +(1-02).g8 [12]
Where:

V¢ is the second moment vector at time step t, [J2 is the exponential decay rate for the second moment estimates
(commonly set to around 0.999)

The need to calculate the correct bias in the moments is also essential, Being that mt and Vt are initialized to 0,
they are biased towards 0, especially during the initial time steps. Adam deals with this bias by correcting the
vector using decay rate, which is 1 for Mt and (12 for Vt. This correction is vital as it ensures that the moving
averages are more represented, particular in the early stage of training. Equations (13) and (14) show the
mathematical expressions for computing correct bias.

M’t= Mt [13]
1-01°

vt

Vve=____ ¢t [14]
1-02

Finally, Adam updates model parameters using equation (15). This is the step where the actual optimization
occurs, moving the parameters in the direction that minimizes the loss function. Parameter update makes use of

adaptive learning rates computed in the previous equations => t+ 1 =t - =-M" [15]
V't+0

Where:

g

t + 1 represents parameters after the update

g

t represents the current parameters before the update

g

() is the learning rate, which is an important hyper-parameter that determines the size of step taken towards
minimizing the loss function

©

M’t is the bias-corrected first moment estimate of the gradient

©

V’t is bias corrected second moment estimate of the gradient

@ [

(Epsilon) is a small scalar (e "*) added to prevent division by zero and maintain numerical stability.

https://loganjournals.online | Volume 12 Issue 1 | 46Page

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

2.3.2 Logistic Regression

In this section, we will explore logistic regression model to train, test, evaluate and predict fraudulent behaviour
from reconstructed pre-processed data using dimensionality reduction techniques of SAE. Logistic regression is
similar to linear regression, but the difference is that it produces a curve while linear regression produces a straight
line. Based on the usage of one or more predictors or independent variables, logistic regression generates logistic
curves that depict the values between zero and one (Omri, 2021). There are many different forms of logistic
regression models, including binary, multiple, and binomial logistic models (Omri, 2021). The binary logistic
regression model is used to predict the likelihood of a binary response (0 or 1) based on one or more factors. The
equation below represents the logistic regression in mathematical form.

ea+ﬁnX

p = 1 + ea+ﬁ’“X

— Bgo + DX ee= Linear Model

/

—

Logtssc NModel
4 1
P =

I + e <Bc+b_x)

o | /
/

Figure 2: Source (Omri, 2021)

The contrast between linear regression and logistic regression is seen in this graph, where logistic regression
depicts a curve and linear regression depicts a straight line (Omri, 2021; Wright, 1995).

2.3.3 Support Vector Machine

Support Vector Machine (SVM) is one of the most popular Supervised Learning algorithms, which is used for
Classification as well as Regression problems. It is primarily used for classification problems in machine
Learning. SVM maps the variables into a high dimensional space using a kernel function, which then finds a
hyperplane to maximize the gap between support vectors and to minimize the error of miscalculation
simultaneously (Pisner & Schnyer, 2020). Hyperplane is a space whose dimension is lower than the mapped
space. Support vectors are points close to the Hyperplane. On one hand, SVM tries to maximize the margin
between support vectors to increase the generality of the model. On the other hand, SVM minimizes the
misclassification to prevent under-fitting. By choosing an appropriate C value, it finds a balance in this bias-
variance tradeoff. In this research, the SVM algorithm was implemented using the Sklearn package in python.
The kernel was ‘rbf” and the C value was 1. Consider the below diagram in which two different categories are
classified using a decision boundary or hyperplane:

47|Page

https://loganjournals.online | Volume 12 Issue 1 |

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

v

Figure 3: Support Vector Machine (Omri, 2021)

2.4 Implementation

The implementation was done by importing relevant python programming language libraries such as Scikit Learn
(Sklearn), pandas, NumPy, Tensor flow, Matplotlib, seaborn, and Keras. This was done using the Jupiter
application programming Interface. The Scikit learn was used to train the Logistic regression and Support Vector
Machine Models, splitting the given dataset into training and test datasets, usually in an imbalanced manner. After
training the Models, they were able to classify or predict new or unseen datasets as represented in table 2 and 3.
2.5 Results and Discussions

The performance evaluation of the trained datasets for the prediction of unseen or new input is done with a
confusion matrix to determine how well the models have performed. The choice of a confusion matrix is based
on imbalanced datasets. The data-set was evaluated with the 2 algorithms to obtain the numbers of true positive
(TP), True Negative (TN), False positive (FP), and False Negative (FN). True positive means that positive
examples are correctly assigned to the positive class. In this dataset, it means fraudulent transactions. True
negative (TN) refers to the negative examples correctly assigned to the negative class, meaning no fraudulent
transactions occurred. False positive (FP) means that the algorithm incorrectly considers negative examples as
positive examples. That is predicting non fraudulent transactions as fraudulent. In other words, when a sample
transaction is non fraudulent, the algorithm mistakenly flags it as an abnormal transaction. False negative (FN) is
a situation where positive examples are wrongly allocated to a negative class. It means the classified transaction
is legitimate; however, the algorithm misunderstood this as an illegitimate transaction. The confusion matrix for
the data-set is shown in the Tables below for different splits of training and testing datasets.

Table 2: Confusion Matrix For Fraud Detection (75% training,25%testing)
Logistics Regression Support Vector Machine
Predicted no Predicted yes | N = Predicted no Predicted yes | N =142158
142158
TN 47127 FN TN 71020 FN
23896 Actual no 3 Actual no

https://loganjournals.online | Volume 12 Issue 1 | 48Page

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

FP 5998 TP FP 109 TP
65137 Actual Yes 71026 Actual Yes
Table 3: Confusion Matrix For Fraud Detection (70% training,30%testing)
Logistics Regression Support Vector Machine
Predicted no Predicted yes | N = Predicted no Predicted yes | N=170589
170589
TN FN 89 TN FN 25
85060 Actual no 85124 Actual no
FP 166 TP FP 34 TP
85274 85406 Actual Yes
Actual Yes

The first model could have been judged by its overall accuracy, which works well for most data sets splits.
However, the accuracy might be insufficient to reflect the performance of a model in the imbalanced dataset. So,
balanced accuracy is used in this case to determine whether an algorithm has performed well or not.
Mathematically, it is represented as:

Balanced Accuracy

2

= Sensitivity+Specificity

Balanced Accuracy = 1(Correctpositive predictions)+(Correct Negative Predictions)

1

2 Number of positives

— Balanced Accuracy = (

+)

Number of Negatives

47127: 23896

TN FN

5998: FP |65137:
TP

TPTN

TP+FP
TN+FN

In the above formula, TP is true positive, and FP is false positive. TN is True Negative, and FN is False Negative.
The higher the balanced accuracy is, the more the classification is put into the right place. The balanced accuracy
analysis in terms of the predictive probabilities of each model is shown in Table 4.
Here, we found that the proposed AML model (SAE-SV M-LR) with 0.89 predictive probability or 89% balanced
accuracy outperformed SAE-SV M (Honlam, 2022) which has 80% accuracy when training and testing datasets
is split to 75% and 25% respectively. Similarly, a better performance prediction holds with a dataset split of 70%/
30%, which shows an improvement prediction of the proposed model to 99%.
Table 4: comparison SAE-LR-SVM and SAE-SVM

https://loganjournals.online |

Volume 12 Issue 1 |

Dataset splits LR SVM SAE-SVM-LR (Avg of LR and SVM) SAE-SVM
75%1/25% 0.78 0.99 0.89 0.80
70%/30% 0.99 0.99 0.99 0.89

49|Page

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

Conclusion and Recommendation

ML is effective in the area of money laundering Detection (MLD). However, its sterling performance relies
heavily on sophisticated feature engineering, which is expensive to scale. In previous studies, few attempts have
been made to combine unsupervised ML with supervised ML. In this work, the proposed model combined SAE,
LR and SVM. In the first step, the model used SAE to perform the pr-processing task of data reconstruction. As
a result, SAE extracted representative features in its encode layer. Then the model passed representative features
to the LR and SVM models. This work used the MLD datasets from Kaggle as input to the model and training
and model evaluation carried out using the proposed model. The result showed that using SAE to extract
representative features improved the performance of SVM. This SAE-LR-SV M method achieves 89% and 99%
balanced accuracy on two different data-set splits for training and testing phases, compared to 80% accuracy
obtained from SAE-SV M method proposed by (Honlam, 2022). In addition, the SAE-LR-SV M model
outperforms other auto-encoder-based models regarding the balanced accuracy (Zamini et al., 2019). This is a
remarkable performance because no model has been able to have 100% prediction due to several factors such
information loss, imbalanced dataset, overfitting, quality and quantity of dataset to mention but few. Overall,
Machine Learning algorithms can be successfully used for financial fraud transaction detection. In the future, this
study will further fine-tune the SAE model and try different classification methods besides SVM and LR. Also,
this research will be conducted on other MLD datasets to further investigate how well SAE can encode
complicated transactions.

Recommendations

To reduce the over-fitting issue in the training Logistic Regression, Lasso, and Ridge regularization can be applied
to the datasets to improve the performance. In addition, cross validation concept and optimization algorithms with
different learning are also the way forward in solving the over-fitting and minimizing information loss
respectively. We equally recommend availability and use of real-World datasets from financial institutions for
model training, testing and validation.

References

Abavisani, M., & Patel, V. M. (2019). Deep sparse representation-based classification. IEEE Signal Processing
Letters, 26(6), 48-52. https://doi.org/10.1109/L. SP.2019.2913022

Albanian, A. (2019). Assessing the introduction of anti-money laundering regulation on bank stock valuation:
An empirical analysis. Journal of Money Laundering Control, 18(1), 76-88.
https://doi.org/10.1108/JMLC.2018.00

Ali, A, & Yangyu, F. (2019). Automatic modulation classification using deep learning based on sparse
autoencoder with non-negative constraints. IEEE Signal Processing Letters, 1625-1630.
https://doi.org/10.1109/L SP.2017.2752459

Anubha, P., Alekhya, B., Shiv, M., & Deepak, B. (2022). Adversarial fraud generation for improved detection.
3rd ACM International Conference on Al, France, New York, USA. https://doi.org/10.3533271/3561723

Archana, P., & Mangu, N. (2019). Credit card fraud detection using XGBoost for imbalanced dataset. Fifteenth
International Conference on Contemporary Computing, August 03-05, Noida, India, ACM, New York,
USA. https://doi.org/10.1145/3607947

Canhoto, A. I. (2021). Leveraging machine learning in the global fight against money laundering and terrorism
financing: An affordances perspective. Journal of Business Research, 24(3), 14-28.

50|Page

https://loganjournals.online | Volume 12 Issue 1 |

https://doi.org/10.1109/LSP.2019.2913022
https://doi.org/10.1108/JMLC.2018.00
https://doi.org/10.1109/LSP.2017.2752459
https://doi.org/10.3533271/3561723
https://doi.org/10.1145/3607947

Logan Journal of Computer Science, Artificial Intelligence, and Robotics

FATF. (2020). History of Financial Action Task Force. Retrieved July 26, 2024, from https://www.fatf-
gafi.org/about/historyoffatf/#d.en.3157

Hanbing, Z. (2021). Analysis of best sampling strategy in credit card fraud detection using machine learning.
6th International Conference on Intelligent Information Technology, February 25-28, Hochi Minh,
Vietnam. ACM, New York, USA. https://doi.org/10.1145/3460179.3460188

Honlam, L. (2022). Credit card fraud detection based on a combination of sparse autoencoder and support
vector machine. 6th International Conference on Electronic Information Technology and Computer
Engineering (EITCE), October 21-23, Xiamen, China. ACM, New York, NY, USA.
https://doi.org/10.1145/35734

Ibomoiye, D. M., Yanxia, S., & Zhenghui, W. (2020). Improved sparse autoencoder-based artificial neural
network approach for prediction of heart disease. Journal of Information in Medicine Unlocked, 5(2),
80-89. https://doi.org/10.1016/j.imu

Jian, S., Yin, L., Charley, C., Jihae, L., Xin, L., & Zhongping, Z. (2020). FDHelper: Assist unsupervised fraud
detection experts with interactive feature selection and evaluation. Proceedings of China Conference on
Human Factors in Computing Systems, April 22-24, 1-12. https://doi.org/10.1145/331831/3376140

Jipeng, C., Chungang, Y., & Cheng, W. (2021). Learning transaction cohesiveness for online payment fraud
detection. ACM Conference on Computing and Data Science (CONFCDS), January 28-30, Stanford,
CA, USA, New York, NY, USA. https://doi.org/10.1145/3448734.3450489

Jorge, F. M. P., Jorge, G., Dandi, B. L., Jorge, A. R. M., & Moises, M. R. A. (2024). Fraud transaction detection
for anti-money laundering systems based on deep learning. Journal of Emerging Computer Techniques,
12(31), 29-34. https://doi.org/10.57020/JECT.1428.46

Moussavi, K. A., & Jamshidi, M. (2019). Conducting a deep regression model utilizing cascaded sparse
autoencoder and stochastic gradient descent. 15th IEEE International Conference on Machine Learning
and Applications. https://doi.org/10.1109/ICMLA.2016.0096

Omri, R. (2020). Applying supervised machine learning algorithms for fraud detection in anti-money
laundering. Journal of Modern Issues in Business Research, 1(1), 441-452.

Shi, Y., Lei, J,, Yin, Y., Cao, K., Li, Y., & Chang, C. I. (2019). Discriminative feature learning with distance-
constrained stacked detection. GeoScience and Remote Sensing Letters IEEE, 16(9), 14-26.
https://doi.org/10.1109/L GRS.2019.2901019

Wan, Z., He, H., & Tang, B. (2019). A generative model for sparse hyper-parameter determination. IEEE
Transactions on Big Data, 4(1), 2-10. https://doi.org/10.1109/TBDATA.2017.2689790

Zamini, M., & Gholamali, M. (2019). Credit card fraud detection using autoencoder-based clustering. 9th
International Symposium on Telecommunication (IST), IEEE.

51|Page

https://loganjournals.online | Volume 12 Issue 1 |

https://www.fatf-gafi.org/about/historyoffatf/#d.en.3157
https://www.fatf-gafi.org/about/historyoffatf/#d.en.3157
https://doi.org/10.1145/3460179.3460188
https://doi.org/10.1145/35734
https://doi.org/10.1016/j.imu
https://doi.org/10.1145/331831/3376140
https://doi.org/10.1145/3448734.3450489
https://doi.org/10.57020/JECT.1428.46
https://doi.org/10.1109/ICMLA.2016.0096
https://doi.org/10.1109/LGRS.2019.2901019
https://doi.org/10.1109/TBDATA.2017.2689790

