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Abstract: This study presents a novel approach for detecting synthetic images using a Convolutional Neural
Network (CNN). The proposed approach makes use of a two-step procedure: first, data collection and
preprocessing; next, model training and assessment. While pre-trained diffusion and Generative Adversarial
Network (GAN) models were used to create synthetic images, real images were used from publicly available
datasets such as FFHQ, AFHQ, and LSUN. To differentiate between genuine and artificial photos, a CNN
model with a complex architecture was created. It consists of fully connected layers for classification and
convolutional layers for feature extraction. Using a 10-fold cross-validation method, the system's average
accuracy, precision, recall, and Flscore were 96.7%, 0.96, and 0.97, respectively. The results obtained show
how well the model detects synthetic images with high recall and precision, underscoring its potential for
practical uses in content authentication, digital forensics, and Al-generated image recognition. The study
emphasizes how crucial it is to use deep learning methods to tackle the escalating difficulties in synthetic
image identification.
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1. INTRODUCTION

Recent advances in deep learning, particularly in Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014), have made it possible to create artificial photographs that are so good that they frequently pass for real
ones (Masood et al., 2022). Because of the potential for abuse, this development presents serious ethical
concerns even as it creates intriguing prospects across a range of businesses. These misuses might have
significant social repercussions, such as spreading misleading information, committing fraud, stealing
identities, and producing offensive or damaging content (Mirsky and Lee, 2021). Establishing reliable methods
to distinguish between actual and artificial intelligence-generated information is crucial as deep learning
advances at a never-before-seen rate and Al-generated visuals becoming more realistic by the day. This is
necessary to mitigate the negative consequences and preserve the reliability and accuracy of information found
online.

There are now two primary methods for identifying phoney photographs, aside from eye inspection, which is
an inaccurate technique. Among these are deep learning and image processing methods for manually created
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feature extraction (Masood et al., 2022). Early techniques for identifying tampered photos sought to pinpoint a
particular tampering approach, such copy-move or splicing (Thakur and Rohilla, 2020). In order to generate or
edit things inside a image, these tampering techniques usually include changing specific portions of the image.
The majority of early fake-detection techniques relied on frequency-domain feature extraction. For instance,
the method suggested in (Fridrich et al., 2003) splits the image into overlapping blocks and uses discrete cosine
transformation to match the characteristics taken from these blocks in order to identify copy-move forgeries.
Similarly, the discrete wavelet transformation is used to acquire low-frequency components in the feature
extraction from the frequency domain approach provided in Li et al. (2007). To get the feature vectors, these
components are simultaneously subjected to singular value decomposition. Nevertheless, this approach is
laborious and susceptible to blurred, scaled, or twisted image objects. The same author suggested using the
Fourier-Mellan transformation in (Bayram et al., 2009) to increase the effectiveness of the earlier approach.
The Bloom filter speeds up the whole detection process while transformation reduces sensitivity to geometric
operations. However, when it comes to image splicing, the aforementioned techniques fall short since it entails
combining segments from many sources, each of which has unique textures and characteristics. The colour
filter array pattern is extracted from the image using the technique suggested in Ferrara et al. (2012). To
distinguish between real and phoney areas, local irregularities within these patterns are subsequently
statistically analysed. In order to detect the phoney images, the classification model is utilised in He et al. (2012)
to detect abnormalities generated by splicing in images. Since splicing often alters the original image's
frequency patterns, feature extraction is done via a discrete cosine transformation. Markov features are then
generated from the transform coefficients that are retrieved.

But as advanced GANs have been developed, images are frequently manipulated using several tampering
techniques at once, producing more realistic-looking images that are hard to spot as manipulated. This makes
it difficult to determine the type of tampering and the precise areas of the image that are impacted. Accordingly,
the hitherto successful techniques that relied solely on feature extraction are no longer able to precisely identify
these alterations (Sharma et al., 2023). Deep learning techniques like Convolutional Neural Networks (CNNs)
can help overcome this. Convolutional neural networks are based on several deep artificial neural network
topologies that have many hidden layers of neurones after convolutional and pooling layers. Higher-level
characteristics, like images, are gradually extracted from the raw input by these layers. These techniques can
mimic more complex decision functions and achieve higher classification accuracy by increasing the number
of layers (Goodfellow et al., 2016; Bianchini and Scarselli, 2014). However, today's high-performing CNNss,
like VGGNet (Simonyan and Zisserman, 2014), DenseNet (Huang et al., 2017), and ResNet (He et al., 2016),
have a lot of layers, which makes the training process more complex and requires a lot of data because there
are many local optima and a lot of hyperparameters. Furthermore, they are regarded as black-box function
approximates, meaning that their judgements cannot be explained (Gu et al., 2018). Hence, this study applies
CNN architecture for detection of Al generated synthetic images.

2. RESEARCH METHOD

There are two primary components to our approach. The first step is data collection and preparation, where the
best photos are chosen to make up the training set after their quality is assessed. The second step is the training
phase, during which a CNN network and a pre-processing pipeline are used to improve the CNN model's ability
to extract and classify features. Perhaps the most significant aspect of our contribution is the use of quality
measurement in the training set composition. This expands on the logical presumption that a network would
concentrate on less evident features and generative process artefacts if it is trained on phoney images of high
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perceptual quality. As a result, it will acquire traits that are independent of the image's content, improving its
capacity to identify phoney images from various ideas.

2.1 Data Acquisition

We use publicly available datasets such as FFHQ (Karras et al., 2019), AFHQ (Choi et al., 2018), and LSUN
(Yu et al., 2015) to acquire genuine images. photographs of human faces may be found in the FFHQ dataset,
photographs of dogs, cats, and a general class of animals can be found in the AFHQ dataset, and about one
million images of ten scene categories and twenty object classes can be found in the LSUN dataset. In order to
assess the cross-concept situation, we then use pretrained diffusion and GAN models to create synthetic images
for various classes. In particular, we create images from pretrained networks in FFHQ, AFHQ, and LSUN-
churches using the StyleGAN2 (Karras et al., 2020) model, and we create images from pretrained networks in
FFHQ, LSUNbedrooms, and LSUN-churches using the Latent Diffusion (Rombach et al., 2022). 2.2 Data
Preprocessing

To guarantee the consistency and quality of the dataset used to train the CNN model, data preparation is a crucial
step. In order to choose high-quality images for the training set, this step starts by evaluating the perceptual
quality of both synthetic and actual images. To reduce noise and increase the learning process's dependability,
low-quality photos are eliminated. After that, every image is enlarged to uniform dimensions (HxXW) in order
to satisfy the input requirements of the model. In order to ensure consistency and speed up convergence during
training, normalisation is done by scaling pixel values to a range of [0,1]. Rotation, flipping, cropping, and
colour modifications are examples of data augmentation techniques that are used to add diversity to the dataset,
increasing its size and improving the model's capacity to generalise to new situations. Balancing approaches
such as undersampling the majority class or oversampling the minority class are used to resolve any imbalances
between the actual and synthetic image classes. Furthermore, photos are tagged as synthetic (111) or actual
(000), in accordance with the model's binary classification objective. To remove any order bias, the dataset is
then randomly mixed before being divided into training, validation, and test sets in standard ratios like 70:15:15.
The Synthetic Minority Over-Sampling Technique with Edited Nearest Neighbours (SMOTEEN) may be used
to better balance unbalanced datasets by fine-tuning oversampled samples. By ensuring that the training data is
high quality, varied, and prepared, these preprocessing processes together maximise the CNN model's
performance and accuracy in identifying synthetic images.

3. PROPOSED CNN MODEL FOR SYNTHETIC IMAGE DETECTION

Here, we proposed a novel CNN architecture for the identification of fake images. This method is distinguished
by a complex architecture that combines two main networks via a number of intermediary processes. In
particular, these networks are made up of the fully connected layers, which are essential to the classification
process based on the characteristics found, and the convolutional layers, which handle the initial processing
and feature extraction from the images. A more complex and precise categorization result is made possible by
this improved framework's ability to capture the nuances and complexities seen in images. A more sophisticated
and useful method of visual data analysis is being heralded by the use of a CNN in the image classification job,
which is an example of the convergence of cutting-edge computational methods with theoretical understanding.
The proposed CNN model's architecture is composed of several layers, each of which is intended to
systematically find and examine characteristics in the input images before arriving at a fully linked layer for
the classification job. Figure 1 illustrates this design.
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Figure 1: Architecture of the Proposed CNN Model

Images with dimensions of 3xHxW, or three colour channels across height and width, are accepted by the input
layer. Each convolutional block in the design is simultaneously made up of a series of two convolutional layers,
batch normalisation, and the use of ReLU activation functions. Each block's first convolutional layer uses a 3x3
kernel to extract features. While the ReLU activation function adds non-linearity, enabling the capture of
intricate patterns, batch normalisation helps to stabilize the training process and speed up convergence.
Additionally, because the suggested CNN design is lightweight and batch normalisation is computationally
demanding (Zhu et al., 2021), stability training was ensured by employing just one of these operations per every
convolutional block. In order to decrease the feature maps' spatial dimensions and computational load,
maxpooling layers with a 2x2 window are employed. To combat overfitting, a dropout layer with a 0.3 rate is
also used, which randomly disables a subset of the neurones during training. In order to capture more abstract
and higher-level characteristics at deeper layers, the network uses four convolutional blocks to extract features,
gradually increasing the number of filters (64, 128, 256, and 512). The last convolutional block is followed by
an Adaptive Average Pooling layer, which shrinks each feature map to 1x1 in size and transforms the spatial
dimensions into a single vector representation. A fully connected neural network with two hidden layers and
512 neurones each is then fed this vector. Dropout is performed between the fully connected layers to further
reduce overfitting and improve the network's capacity for generalization. The output layer generates a
probability score for every class using a sigmoid activation function that is appropriate for binary classification
problems.

3.1 Training of the CNN Model

A systematic procedure utilising the Deep Learning Toolbox is required to train the CNN model with the
obtained dataset in MATLAB. The image Datastore function allows for the efficient processing of huge image
collections by loading the pre-processed dataset into MATLAB. After that, splitEachLabel is used to separate
it into training, validation, and test sets. To improve variability, augmentedlmageDatastore is used to
supplement the data. Convolutional layers for feature extraction, batch normalisation for stability, ReLU
activation for non-linearity, and fully connected layers for classification are all components of the CNN
architecture, which is specified by the layerGraph and layer functions. To differentiate between actual and fake
images, the last layer uses a sigmoid activation function for binary classification.

By defining the optimiser (i.e., Adam), learning rate, mini-batch size, and number of epochs, the training
Options function regulates the training procedure. Accuracy and loss measures are used for both training and
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validation as the train Network function iteratively trains the model. To avoid overfitting, early stopping is used,
and classification is used to assess the trained model on the test dataset. To evaluate the model's efficacy,
important performance measures including accuracy, precision, recall, and F1-score are calculated. Confusion
matrices and ROC curves are two examples of MATLAB's visualisation tools that help analyse findings and
guarantee a reliable and effective model for identifying fake images. 4. System Implementation

In order to deploy the system in the actual world, the trained CNN model must be integrated into a working
framework. In this stage, the preprocessing, training, and evaluation elements are combined to create a single
system that can identify artificial images. The stable environment of MATLAB facilitates smooth integration
by offering resources to optimise the pipeline from the capture of input images to classification. In order to feed
actual or artificial images into the framework for analysis, the system starts with an image input module. The
same procedures used during the model training phase are used for preprocessing these photos, which includes
scaling, normalisation, and augmentation. The trained CNN model, which has been tuned to detect minute
details and artefacts unique to synthetic images, is then applied to the pre-processed images. The CNN model's
outputs are processed by the classification module, which uses the sigmoid activation function to determine the
likelihood that each image is real or artificial. The final categorisation label is determined by setting a decision
threshold (e.g., 0.5). The technology also saves results for further review and logs forecasts. A Graphical User
Interface (GUI) or an API may be used to improve usability by enabling users to input photos and interactively
examine categorisation results. Finally, the assessment module guarantees the correctness and dependability of
the deployed system. The system can adjust to new differences in synthetic image production thanks to the
facilitation of continuous performance monitoring on fresh datasets. This implementation offers a reliable,
effective, and user-friendly way to identify fake photos in practical situations.

5. SYSTEM RESULTS

The test dataset, which consists of both synthetic and actual photos that were not used in the training process,
is used to assess the system's performance. The efficacy of the system in identifying synthetic images is
evaluated by computing key metrics including accuracy, precision, recall, and F1-score. The outcomes show
that the CNN model is able to generalise effectively to new data and achieves high accuracy. For example,
recall and accuracy scores close to 1.0 indicate that the system detects synthetic images accurately with few
false negatives and false positives. To give a thorough analysis of categorisation performance, a confusion
matrix is produced that displays the true positives, true negatives, false positives, and false negatives. This
makes it easier to spot any particular problems the model could have, such identifying particular kinds of fake
photos. The model's capacity to differentiate between classes at different decision thresholds is also measured
by plotting a receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC).
The system's resilience is reinforced by its persistent high AUC. A 10-fold cross-validation technique was used
to evaluate the system, guaranteeing a thorough assessment of its functionality. Using this approach, the dataset
is divided into ten equal subsets, nine of which are utilised for training and one for testing. The procedure is
then repeated ten times. As seen in Table 1, a reliable measure of the model's performance is obtained by
averaging the outcomes from each fold.

Table 1: System Performance Result Validation

Iterations Accuracy (%) Precision Recall F1-Score
1 96.5 0.95 0.97 0.96
2 96.7 0.96 0.97 0.97
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3 96.3 0.95 0.96 0.96
4 97.0 0.96 0.97 0.97
5 96.8 0.96 0.97 0.97
6 96.6 0.96 0.96 0.96
7 97.2 0.97 0.97 0.97
8 96.9 0.96 0.97 0.97
9 96.4 0.95 0.96 0.96
10 96.8 0.96 0.97 0.97
Mean 96.7 0.96 0.97 0.97

The 10-fold cross-validation findings show how reliable and successful the algorithm is at identifying fake
photos. The model's outstanding ability in accurately categorising both real and synthetic images across a variety
of datasets is demonstrated by its average accuracy of 96.7%.

The system can reduce false positives while keeping a high detection rate of synthetic images, as evidenced by
precision and recall values of 0.96 and 0.97, respectively. These scores attest to the model's ability to make

well-balanced decisions, spotting tiny generating artefacts without making needless misclassifications.
Furthermore, the resilience of the model in managing a variety of difficult inputs is demonstrated by the F1-
score of 0.97, which shows the good harmony between accuracy and recall. Figure 2 displays the system
implementation's performance correctness. The illustration shows the accuracies attained across various

implementation phases of the model.
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Figure 2: System Accuracy Results
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The model's generalisation skills are validated by its consistent performance across all folds, which guarantees
that it can adjust to changes in the dataset. For real-world applications, where the system could come across
invisible synthetic image types produced by various algorithms, this resilience is essential. Even though the
differences in fold results are small, they highlight how crucial cross-validation is for evaluating the model's
dependability across various training and testing splits. All things considered, the system's strong accuracy,
precision, recall, and F1-score metrics show that it has the potential to be a workable synthetic image detection
solution that can be implemented in situations demanding sophisticated visual data processing.

6. CONCLUSION

The goal of this paper is to create a reliable system that uses a Convolutional Neural Network (CNN) to identify
artificial images. Data collection and preprocessing were the first steps in the two-stage procedure, which was
followed by model training and assessment. While pre-trained diffusion and GAN models were used to create
synthetic images, real photographs were taken from publicly accessible databases. In order to efficiently extract
characteristics from these photos and categorise them into either synthetic or actual categories, the CNN
architecture was created. A 10fold cross-validation method was used to analyse the system, giving a
comprehensive image of how well the model performed across various data subsets.

With an average accuracy of 96.7%, precision of 0.96, recall of 0.97, and F1-score of 0.97, the findings showed
how successful the system was. These measures show that the model is a dependable method for synthetic
image recognition since it is very good at both identifying fake images and reducing false positives. The model's
resilience and generalisability are confirmed by the consistent performance throughout the ten folds. This work
concludes by demonstrating how deep learning models may be used to tackle the increasing difficulty of
identifying fake photos, offering a useful tool for uses including content authentication, digital forensics, and
Al-generated image detection.
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