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Introduction  

Modern agriculture faces significant challenges, including meeting the rising demand for food production, 

addressing resource constraints, and ensuring environmental sustainability. As the population of Michika 

expands, the agricultural sector encounters multifaceted challenges such as climate change, soil degradation, and 

suboptimal resource utilization. Traditionally, farmers have primarily utilized conventional farming methods, 

which, unfortunately, lack precision, resulting in reduced productivity and prolonged time consumption. 

Precision farming, leveraging advanced technologies, enhances productivity by precisely identifying the essential 

practices for each season (Durai, & Shamili, 2022). Integrating machine learning techniques presents promising 

avenues for tackling these challenges by optimizing agricultural practices and elevating productivity. AI driven 

technologies provide innovative solutions to refine agricultural processes, enhance yield predictions, optimize 

OPTIMIZING CROP YIELD PREDICTION USING MACHINE 

LEARNING IN MICHIKA AGRICULTURAL 

LANDSCAPEERAFRAMEWORKSYSTEMSSUSTAINABILITY 

Abstract: Crop yield prediction based on environmental, soil, water, and weather parameters has become a 

vital area of research, addressing the growing need for sustainable agricultural practices and food security. 

This study adopts a machine learning approach to optimize crop yield production within the agricultural 

landscape of Michika Local Government Area, Adamawa State. Applying extensive crop datasets, machine 

learning techniques are utilized to analyze, interpret, and uncover critical factors and patterns influencing crop 

yields. The main objective is to develop a robust predictive model that empowers farmers and stakeholders 

with actionable insights, to enhance agricultural productivity. The results demonstrate a substantial 

improvement in yield predicting accuracy through machine learning-based methods compared to traditional 

approaches. ANN with the lowest RMSE (3136.8), the lowest MAE (2502.2), and higher R² (0.073255), 

indicates the most accurate predictions. These findings underscore the transformative potential of artificial 

intelligence in advancing precision agriculture, enabling resource-efficient farming, and bolstering food 

security. This study also highlights avenues for future research, including optimizing resource allocation 

strategies, identifying resilient crop varieties, predicting and mitigating crop diseases, and mapping soil 

suitability for diverse crops. Such efforts would further drive the adoption of smart agricultural systems, 

enhancing productivity and sustainability while supporting the transition to climate-resilient farming 

practices.    
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resource management, and mitigate the adverse effects of climate change on crop production. This study 

addresses the need to utilize machine learning algorithms in the agricultural domain, specifically focusing on 

their empirical effectiveness in optimizing crop yield production.  

The agricultural sector in Michika, like other parts of Nigeria, faces challenges such as unpredictable weather 

conditions, inadequate knowledge of soil nutrient levels, pest and disease management, and inefficient resource 

use. These challenges contribute to low productivity and food insecurity. Conventional farming methods fail to 

address the complexities of modern agricultural systems, leaving farmers vulnerable to losses and inefficiencies. 

Accurate crop yield prediction remains a significant hurdle, as it requires integrating multiple factors, such as 

climate conditions, soil characteristics, and farming practices (Prabavathi & Chelliah, 2022). Addressing this gap 

demands advanced tools and methodologies that can provide actionable insights and empower farmers to make 

informed decisions (Mgendi, 2024).  

This study aims to leverage machine learning techniques to optimize crop yield in Michika by developing 

predictive models that integrate environmental, soil, and management factors. Specifically, the objectives are to 

employ machine learning algorithms on historical data for crop yield prediction, compare various machine 

learning techniques for forecasting crop yields, and assess the effectiveness of these techniques in predicting 

yields to recommend the most suitable approach tailored to Michika's conditions.   

There is a pressing need to enhance agricultural productivity in Michika Local Government Area Adamawa State, 

like other parts of Nigeria. Agriculture plays a crucial role in the economy of the region, and optimizing crop 

yield production can contribute to food security, poverty reduction, and overall economic development (Jiya et 

al., 2023). Leveraging machine learning techniques will harness the power of algorithms to analyze large 

agricultural datasets and uncover patterns that can significantly enhance crop yield production. Furthermore, the 

utilization of crop datasets that contain information related to climate conditions, soil quality, farming techniques, 

and crop performance, among others offers an opportunity to gather valuable insights into agricultural practices 

specific to the area. Leveraging machine learning algorithms for optimizing crop yield production based on 

historical data in the area holds great potential to address agricultural challenges, enhance food security, and 

contribute to the socio-economic development of the region  

2. Related works    

Crop yield prediction is a pivotal factor in agricultural success and efficiency, yet it poses significant challenges 

to farmers. Knowledge gaps regarding surplus harvests, unpredictable weather, seasonal rainfall, soil nutrients, 

fertilizer accessibility, pest management, and post-harvest losses contribute to declining crop production 

(Abdulraheem et al., 2022). Addressing these challenges requires a holistic approach that integrates advanced 

technologies and disseminates knowledge to empower farmers (Mgendi, 2024). In the quest to optimize crop 

yield, farmers require timely and insightful guidance for predicting productivity, conducting analyses, and 

unlocking the full potential of their crops. The real challenge lies in the accuracy of yield prediction, where 

tapping into a farmer's past experiences with a specific crop becomes a valuable resource for making informed 

predictions in subsequent crop cycles (Lata & Chaudhari, 2019).  

Crop yield prediction ventures into the realm of advanced algorithms, forecasting crop production by harnessing 

a diverse array of data points. These include temperature, rainfall, pH levels, pesticide and fertilizer application, 

and various meteorological variables. The intricacies of crop yield forecasting hinge on the application of 

predefined criteria, creating a pathway to anticipate and enhance the productivity of each crop cycle (Oluwole et 

al., 2022). Conventionally, farmers have predominantly employed conventional farming methods. However, 

these methods lack precision, leading to decreased productivity and extensive time consumption. Precision 

farming, on the other hand, enhances productivity by identifying the necessary practices for each season. 
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Elements of precision farming encompass forecasting weather conditions, soil analysis, recommending suitable 

crops for cultivation, and determining precise quantities of fertilizers and pesticides required (Abdulraheem et 

al., 2022; Durai & Shamili, 2022). Several researchers have leveraged machine learning methodologies in many 

parts of the world, including regression trees, random forests, multivariate regression, association rule mining, 

and artificial neural networks, to predict crop yields. Utilizing machine-learning (ML) models, crop-yield is taken 

as an implicit function of input variables, encompassing factors such as weather components, and soil conditions, 

thereby presenting a potentially complex and nonlinear function. According to (Durai & Shamili, 2022; Mgendi, 

2024) in the context of Precision Farming (PF), innovative technologies such as ML, Data Mining, Data 

Analytics, and Internet of a Thing (IoT) converge to usher in a new era of data-driven agricultural efficiency. 

These innovative tools are not just data collectors; they are orchestrators of insights, contributing to a reduction 

in manual labor while concurrently amplifying productivity. At the heart of this technological symphony, ML 

techniques take center stage, autonomously detecting, identifying, and predicting outcomes by extracting 

knowledge, and relationships from the vast datasets under scrutiny (Domingues et al., 2022). In the agricultural 

landscape of Nigeria, as delineated by (Jiya et al., 2023), crop cultivation emerges as the predominant pursuit, 

carrying significant implications for families and the broader economy.    

The accurate prediction of crop yields stands as a critical challenge in the agricultural domain, necessitating 

advanced AI-driven solutions (Mgendi, 2024). Farmers confront a plethora of uncertainties, including limited 

knowledge about potential harvest excess, unpredictable weather conditions, and dynamic seasonal rainfall 

policies. The intricacies extend to the depletion of soil nutrition levels, the volatile availability and cost of 

fertilizers, challenges in pest control, and the ever-present specter of post-harvest losses (Oluwole et al., 2022). 

These multifaceted factors collectively contribute to a decline in crop production (Durai & Shamili, 2022). The 

integration of AI technologies can provide a sophisticated framework for addressing these challenges 

comprehensively. AI algorithms can analyze vast datasets, assimilating information on weather patterns, soil 

health, fertilizer dynamics, and pest management. This data-driven approach enables precise predictions and 

recommendations, empowering farmers with actionable insights to optimize crop yield, resource allocation, and 

risk mitigation. Exploiting AI holds the promise of enhancing decision-making processes, promoting sustainable 

practices, and fostering resilience in the face of diverse challenges (Durai & Shamili, 2022; Mgendi, 2024).     

 Traditionally, farmers have adhered to conventional farming practices, which lack precision and result in reduced 

productivity and time consumption, particularly in the face of unpredictable climate conditions (Zhou & Ismaeel, 

2021; Prabavathi & Chelliah, 2022). Exploiting the use of variable farming resources like soil, fertilizer, and 

weather data, including crop information, is of utmost importance. Achieving high yields hinges on the efficient 

deployment of these resources (Kwaghtyo & Eke, 2023). In AI-driven agriculture, forecasting weather 

conditions, scrutinizing soil properties, suggesting optimal crops for cultivation, and determining precise 

quantities of fertilizers and pesticides constitute key facets of precision farming (Zhou & Ismaeel, 2021). 

Exploiting cutting-edge technologies such as IoT, data mining, data analytics, and machine learning, precise 

farming systematically gathers data, trains sophisticated systems, and forecasts outcomes (Mgendi, 2024). This 

technological integration not only minimizes the need for manual labor but also enhances overall productivity in 

the agricultural landscape (Durai & Shamili, 2022; Mgendi, 2024). Predicting crop yields stands out as a 

formidable challenge in the domain of smart agriculture, prompting the proposal and validation of numerous 

models (Kuradusenge et al., 2023; Mgendi, 2024). Given that crop production is influenced by various factors 

like weather, climate, seed quality, fertilization, and soil composition, addressing this challenge requires the 

integration of diverse datasets (Oluwole et al., 2022). Studies by Bali & Garba (2021), Bali et al. (2021) and Bali 



 

48 | P a g e  
      

 https://loganjournals.online           Volume 11 Issue 1     

Logan Journal of Computer Science, Artificial Intelligence, and Robotics 

(2024) demonstrated that neural network-based methods can effectively learn from environmental data, self-

organize their structures, and deliver strong prediction performance.   

Awe and Dias (2022) developed a deep-learning model, specifically a generative Artificial Neural Networks 

(ANN), to effectively capture and estimate the complex and non-parametric features of agricultural output. The 

study was conducted in Nigeria with data covering forty years (19802019). They compared the results with the 

autoregressive integrated moving average model (ARIMA). The empirical findings demonstrate the superiority 

of the hybrid ANN model over the traditional box-Jenkins ARIMA methodology for forecasting non-stationary 

time series. The proposed ANN model significantly improves forecasting accuracy in this context. A fuzzy 

inference system (FIS) was developed by (Shuaibu et al., 2021) to forecast rice yield in Jigawa state, Nigeria, for 

the period 2021-2030. This forecasting model incorporated variables such as “rainfall, land availability, and 

historical rice production data”. The findings of this study indicate that in the year 2022, a total land area of 

177,950 hectares will be demanded, along with a rainfall of 873 millimeters, to achieve a rice production of 

1,070,000 metric tons. Utilizing an ANN multilayer perceptron (MLP), Alves et al. (2018) predicted soybean 

productivity by considering growth habits, sowing density, and agronomic characteristics. The outcomes reveal 

a commendable 98% success rate on the training dataset and a noteworthy 72% accuracy on the validation dataset, 

demonstrating the network's capability to estimate soybean productivity based on agronomic features, growth 

habits, and population density. Recognizing the profound impact of crop production setbacks, this research pivots 

toward a comparative exploration of diverse techniques for predicting crop yields.  

3. Methodology  

3.1.Study Area   

This exploration is slated to unfold within the Michika Local Government Area of Adamawa State, strategically 

situated in the far northeast, marked by geographic coordinates covering latitude 11°8' South and longitude 15°13' 

E. This locality shares a northern boundary with Madagali LGA and extends further to form an international 

boundary with the Republic of Cameroon to the northeast. Borno State bounds it to the West, while Mubi and 

Hong LGAs define its southern boundary. The Michika LGA, a mosaic of diversity, encompasses four distinctive 

development areas: Michika  

Metropolitan, Garta, Bazza, and Madzi, sprawled across a land mass measuring 961 km2. The dynamic shade of 

this region is woven together by an estimated population of 211,124 occupants. Embarking on a temporal line, 

this study is projected for a duration of seven months, from May to November during the Wet Season. This 

strategic time frame aims to encapsulate and scrutinize the nuances of environmental dynamics and agricultural 

practices, offering a comprehensive insight into the intricacies of the Michika Local Government Area.  

3.2.Crop yield parameters  

In this area, groundnut, maize, and rice are the predominant crops. The essential weather factors impacting crop 

yield include precipitation, air temperature, air moisture, solar radiation, and wind speed. An AI-driven analysis, 

guided by, was employed to examine climate and weather parameters. Additionally, historical crop yield data 

linked to soil and weather conditions, encompassing temperature, humidity, rainfall, and soil pH, were employed 

for the nominated crops in the region. The equipment used for data collection is shown in Table 1.  

 

 

 

Table 1 Showing equipment used for data collection  

S/ N  Equipment  Use  
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1  Soil pH Tester (Excellent Corrosion Proof Soil Fertility Nutrient Meter)  Measures soil pH  

2  Digital thermometer  Measures temperature  

3  Hygrometer (wet and dry bulb)  Measures humidity   

4   Rain gauge (Programmable Water Timer)  Measures rainfall   

3.3.Selected Crops  

Groundnut (Arachis hypogaea), Maize (Zea mays), and Rice (Oryza sativa) datasets were used. The accession of 

crop yield data involved collating information from the agricultural department and various farmer cooperatives 

within the study area during the Wet season. The major factors of the dataset include District, farm size (ha), 

Fertilizers (Nitrogen, Phosphorus, Potash) (Kg), temperature (oC), rainfall (mm), humidity (RH), yield (kg/ha). 

May to November was regarded as the Wet Season. The crop yield in kg/ha was taken as the target variable. The 

visualization of the crop yield dataset is shown in Figure 1.  

  
Figure 1 presents the visualization of the crop yield dataset.  

3.4.DATA PRE-PROCESSING   

The data for this exploration passed a series of preprocessing steps aimed at optimizing the accuracy of crop yield 

production predictions. MATLAB (2021a) served as the primary development platform for creating and assessing 

the proposed model. Initially, a rigorous data cleaning process was executed, involving transformative activities 

to exclude any duplicate or irrelevant data points within the dataset. Following this, feature selection was 

performed to assess the correlation between features and the target variable, crop yield. This analysis aids in 

detecting and retaining the most pertinent features. Subsequently, feature scaling was employed to standardize 

numerical features, employing techniques such as min-max scaling or standardization. This normalization 

ensures that all numerical features are on a comparable scale. Concurrently, categorical variables were converted 

into numerical representations to enhance compatibility with machine learning algorithms. In the final stages of 

preprocessing, the dataset was partitioned into distinct sets for training, validation, and testing. The training set 

was employed for model training, the validation set contributed to hyperparameter tuning, and the testing set 

served as the benchmark for estimating the model's performance.   

This research explores four categories of machine learning algorithms: ANN, decision trees (DT), Random Forest 

(RF), and support vector machines (SVM). The motivation for exploring machine learning algorithms such as 

ANN, DT, RF, and SVM stems from their ability to handle complex, nonlinear connections within data and give 
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accurate predictions for diverse agricultural applications. These algorithms are well-suited to optimize crop yield 

predictions due to their inflexibility, scalability, and rigidity in modeling intricate patterns and relations between 

various environmental, soil, and management factors. The activity diagram for the model is shown in Figure 2.  

  

Figure 2: The activity diagram depicting the flow of tasks and decisions in the crop yield prediction process.  

i) Data Collection: Relevant historical data on crop yields, climate, soil conditions, and other relevant factors 

were collected.   

ii) Data Preprocessing: The data was prepared and standardized, handling missing values, scaling, and 

encoding categorical variables. The data from inputs and target datasets were standardized between zero 

and one using (1) to avoid large numeric ranges from the values of the predictor variables.    

x−xmin 

 xnornal =                            

xmax −xmin 

(1) where 𝑥 is the respective variable, 𝑥𝑚𝑖𝑛 is the minimum value, 𝑥𝑚𝑎𝑥 is the maximum, and 𝑥𝑛𝑜𝑟𝑚al is the 

standardized value.  

iii) Split Data: The data was divided into training and testing datasets.  

iv) Model Selection: Each of the machine learning models ANN, DT, RF, and SVM was designated for training.  

v) Model Training: Each model was trained on the training dataset.  
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vi) Model Evaluation: The performance of each model using appropriate metrics was estimated.  The statistical 

metrics employed to estimate the performance of artificial intelligence-driven predictive models are RMSE 

(Root Mean Squared Error), R-squared, and Mean Absolute Error (MAE). The motivation for using RMSE, 

R-squared, and MAE to evaluate models in crop yield prediction is to give complementary insights into 

accuracy and reliability. RMSE measures the average squared error, lower values indicate better model 

performance, correct large errors, and assess model accuracy and sensitivity to variability. MAE measures 

the average absolute error, lower values indicate better performance, treat all deviations equally, and balance 

average accuracy while being robust to outliers. R² indicates the proportion of variance explained by the 

model; values closer to 1 indicate better performance, while negative values suggest the model performs 

worse than a simple mean predictor. The training errors were tracked using the RMSE function, which is 

specified as:  

 1 n 2                                        

RMSE = n i=n (ytargeti − ynet ) 

(2)  

R2, or the relationship between the modeled data value and the observed data value is examined via the coefficient 

of determination given by:  
n (x−x )2 

R2 =1− in=1 
i 2                                        (3)  

 

i=1(x−x) Where  

xi = the observed value x = the modeled 

value n = the number of errors, Σ = 

summation symbol,  

(xi – x)2 = the square of absolute errors. R2 = the 

correlation coefficient    

x = the average value  

The Mean Absolute Error (MAE) represents the average of the absolute differences between the actual target 

values and the predicted values. It is mathematically defined as shown in (4).  

 1 N − 

 MAE= yi −yi                            

N i=1 

(4) vii) Hyperparameter Tuning: The model hyperparameters were optimized for improved model performance.  

viii) Prediction: The trained models were used to predict crop yield for new data.  

ix) Results Visualization: The output was visualized and the predictions were compared with actual values 

using charts or plots.  

This entire process was implemented in MATLAB using built-in functions; fitcensemble, fitctree, svm, and 

trainNetwork functions for each machine learning model, along with built-in evaluation functions; crossval, 

cvLoss, and predict.  

4. Interpretation of Results and Discussion   
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The results from the four machine learning models; ANN, DT, RF, and SVM as shown in Table 2 provide valuable 

insights into the performance of the models in predicting crop yield. The performance of each model was 

discussed based on the three metrics: RMSE, MAE, and R².  

Table 2 present a clear comparison of how each model performs evaluated using RMSE, MAE, and R².  

Model                 RMSE        MAE            R2      

DT  5992.0      3841.8        -2.3817  

SVM  3315.6  2593.9      -0.035425  

RF  3430.6        2733.0  -0.10846  

ANN  3136.8      2502.2       0.073255  

DT: The high RMSE (5992) value for the DT model indicates that its predictions diverge significantly from the 

actual yield values on average. This suggests that the DT could not capture the complexity of the relationship 

between the predictors and the target variable well. MAE: Similarly, the MAE (3841.8) is relatively high, 

meaning that the average absolute error between the predicted and actual values is large. This further supports 

the conclusion that the model is struggling to predict crop yields accurately. The negative R² (-2.3817) value 

indicates that the DT model is performing worse than a simple mean-based model (i.e., always predicting the 

average yield). This is a clear sign of poor model performance and suggests that the DT is overfitting or capturing 

very little of the variance in the target variable. This shows that the DT model is underperforming, likely due to 

overfitting or the inability to capture the complex patterns in the data. The negative R² and high RMSE/MAE 

suggest that this model is not suitable for crop yield prediction in this case.  

RF: with RMSE (3430.6) is slightly worse than SVM, indicating higher error. It is the third best, slightly worse 

than SVM with MAE (2733). R² (-0.10846) is negative, meaning the model also performs worse than the baseline 

mean predictor. This indicates that RF struggles to generalize well and has suboptimal performance compared to 

SVM and ANN.  

SVM: This is the second best after ANN with RMSE (3315.6), indicating decent predictive accuracy. Second best 

after ANN with MAE (2593.9). The R² (0.035425) is close to zero, showing the model explains very little of the 

variance and marginally outperforms the baseline. This shows that SVM performs moderately well but has limited 

predictive power.  

ANN: the lowest RMSE (3136.8), indicates the most accurate predictions. The lowest MAE (2502.2), is 

suggesting the smallest average prediction errors. R² (0.073255) is slightly positive, indicating the model explains 

a small amount of variance and outperforms the baseline predictor. This indicates that ANN outperforms the other 

models in all metrics, making it the best-suited model for this dataset and problem.  

5. The Comparison of Models  

The bar chart in Figure 3 illustrates the comparison of RMSE values for four different machine learning models: 

DT, SVM, RF, and ANN.  
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Figure 3 visualizes a comparison of the RSME of the models  

DT is the worst-performing model, with high RMSE and MAE values, and a very negative R², indicating that the 

model is poorly fitted to the data and might be overfitting or not capturing the relevant features of the dataset.  

The bar chart in Figure 4 presents a comparison of the MAE values for four different machine learning models: 

DT, SVM, RF, and ANN.  

 

Figure 4 visualizes a comparison of the MAE of the models  

SVM and RF: Both perform similarly, with SVM slightly outperforming RF in terms of RMSE and MAE. Both 

models show negative R² values, indicating they are not suitable for explaining the variance in crop yields. They 

are more accurate than DT, but not as effective as ANN. The bar chart in Figure 5 compares the MAE values 

across four machine-learning models: DT, SVM, RF, and ANN.  
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Figure 5 visualizes a comparison of the R2 of the models  

Best Performing Model: ANN consistently outperforms the other models in all metrics, followed by SVM. RF 

and DT perform poorly, with DT being the worst. Among the models, ANN shows the best performance in terms 

of RMSE, MAE, and R². The generally low or negative R² values indicate that all models, except ANN, struggle 

to capture the underlying patterns in the data. This suggests that the available features (Temperature, Rainfall, 

Humidity, and District) might not fully capture the complexity of the factors influencing crop yield, or that further 

feature engineering, data preprocessing, or model tuning may be required for better predictive accuracy. However, 

ANN’s positive R² suggests it is slightly capable of explaining the variance, and the most reliable model for 

predicting crop yield.   

6. Conclusion  

This research evaluates various yield prediction techniques, analyzing their effectiveness to recommend strategies 

based on weather parameters and nutrient requirements. The study developed a predictive model capable of 

accurately forecasting crop yields using features deduced from comprehensive datasets. This model offers 

farmers in the study area actionable insights into optimal crop varieties, fertilizer application, and prevailing 

environmental conditions, thereby enhancing decision-making and reducing potential losses. The findings 

emphasize the transformative potential of machine learning (DT, RF, and SVM) in optimizing agricultural 

productivity. While the ANN model demonstrated superior performance by minimizing prediction errors, the 

overall predictive accuracy was constrained, as indicated by low R² values. Addressing these limitations presents 

an important opportunity for future research, which could incorporate real-time data from IoT sensors, scale the 

model to different crops and regions, and develop more robust, user-friendly tools to promote widespread 

adoption. Additionally, this study highlights the importance of optimizing hyperparameters, such as learning rate, 

number of neurons, and activation functions, to improve predictive accuracy. Exploring hybrid modeling 

combining ANN with other techniques is also recommended, as they have the potential to leverage 

complementary strengths of various approaches, thereby enhancing overall model performance.  
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