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Abstract: Crop yield prediction based on environmental, soil, water, and weather parameters has become a
vital area of research, addressing the growing need for sustainable agricultural practices and food security.
This study adopts a machine learning approach to optimize crop yield production within the agricultural
landscape of Michika Local Government Area, Adamawa State. Applying extensive crop datasets, machine
learning techniques are utilized to analyze, interpret, and uncover critical factors and patterns influencing crop
yields. The main objective is to develop a robust predictive model that empowers farmers and stakeholders
with actionable insights, to enhance agricultural productivity. The results demonstrate a substantial
improvement in yield predicting accuracy through machine learning-based methods compared to traditional
approaches. ANN with the lowest RMSE (3136.8), the lowest MAE (2502.2), and higher R? (0.073255),
indicates the most accurate predictions. These findings underscore the transformative potential of artificial
intelligence in advancing precision agriculture, enabling resource-efficient farming, and bolstering food
security. This study also highlights avenues for future research, including optimizing resource allocation
strategies, identifying resilient crop varieties, predicting and mitigating crop diseases, and mapping soil
suitability for diverse crops. Such efforts would further drive the adoption of smart agricultural systems,
enhancing productivity and sustainability while supporting the transition to climate-resilient farming
practices.
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Introduction

Modern agriculture faces significant challenges, including meeting the rising demand for food production,
addressing resource constraints, and ensuring environmental sustainability. As the population of Michika
expands, the agricultural sector encounters multifaceted challenges such as climate change, soil degradation, and
suboptimal resource utilization. Traditionally, farmers have primarily utilized conventional farming methods,
which, unfortunately, lack precision, resulting in reduced productivity and prolonged time consumption.
Precision farming, leveraging advanced technologies, enhances productivity by precisely identifying the essential
practices for each season (Durai, & Shamili, 2022). Integrating machine learning techniques presents promising
avenues for tackling these challenges by optimizing agricultural practices and elevating productivity. Al driven

technologies provide innovative solutions to refine agricultural processes, enhance yield predictions, optimize
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resource management, and mitigate the adverse effects of climate change on crop production. This study
addresses the need to utilize machine learning algorithms in the agricultural domain, specifically focusing on
their empirical effectiveness in optimizing crop yield production.

The agricultural sector in Michika, like other parts of Nigeria, faces challenges such as unpredictable weather
conditions, inadequate knowledge of soil nutrient levels, pest and disease management, and inefficient resource
use. These challenges contribute to low productivity and food insecurity. Conventional farming methods fail to
address the complexities of modern agricultural systems, leaving farmers vulnerable to losses and inefficiencies.
Accurate crop yield prediction remains a significant hurdle, as it requires integrating multiple factors, such as
climate conditions, soil characteristics, and farming practices (Prabavathi & Chelliah, 2022). Addressing this gap
demands advanced tools and methodologies that can provide actionable insights and empower farmers to make
informed decisions (Mgendi, 2024).

This study aims to leverage machine learning techniques to optimize crop yield in Michika by developing
predictive models that integrate environmental, soil, and management factors. Specifically, the objectives are to
employ machine learning algorithms on historical data for crop yield prediction, compare various machine
learning techniques for forecasting crop yields, and assess the effectiveness of these techniques in predicting
yields to recommend the most suitable approach tailored to Michika's conditions.

There is a pressing need to enhance agricultural productivity in Michika Local Government Area Adamawa State,
like other parts of Nigeria. Agriculture plays a crucial role in the economy of the region, and optimizing crop
yield production can contribute to food security, poverty reduction, and overall economic development (Jiya et
al., 2023). Leveraging machine learning techniques will harness the power of algorithms to analyze large
agricultural datasets and uncover patterns that can significantly enhance crop yield production. Furthermore, the
utilization of crop datasets that contain information related to climate conditions, soil quality, farming techniques,
and crop performance, among others offers an opportunity to gather valuable insights into agricultural practices
specific to the area. Leveraging machine learning algorithms for optimizing crop yield production based on
historical data in the area holds great potential to address agricultural challenges, enhance food security, and
contribute to the socio-economic development of the region

2. Related works

Crop yield prediction is a pivotal factor in agricultural success and efficiency, yet it poses significant challenges
to farmers. Knowledge gaps regarding surplus harvests, unpredictable weather, seasonal rainfall, soil nutrients,
fertilizer accessibility, pest management, and post-harvest losses contribute to declining crop production
(Abdulraheem et al., 2022). Addressing these challenges requires a holistic approach that integrates advanced
technologies and disseminates knowledge to empower farmers (Mgendi, 2024). In the quest to optimize crop
yield, farmers require timely and insightful guidance for predicting productivity, conducting analyses, and
unlocking the full potential of their crops. The real challenge lies in the accuracy of yield prediction, where
tapping into a farmer's past experiences with a specific crop becomes a valuable resource for making informed
predictions in subsequent crop cycles (Lata & Chaudhari, 2019).

Crop yield prediction ventures into the realm of advanced algorithms, forecasting crop production by harnessing
a diverse array of data points. These include temperature, rainfall, pH levels, pesticide and fertilizer application,
and various meteorological variables. The intricacies of crop yield forecasting hinge on the application of
predefined criteria, creating a pathway to anticipate and enhance the productivity of each crop cycle (Oluwole et
al., 2022). Conventionally, farmers have predominantly employed conventional farming methods. However,
these methods lack precision, leading to decreased productivity and extensive time consumption. Precision
farming, on the other hand, enhances productivity by identifying the necessary practices for each season.
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Elements of precision farming encompass forecasting weather conditions, soil analysis, recommending suitable
crops for cultivation, and determining precise quantities of fertilizers and pesticides required (Abdulraheem et
al., 2022; Durai & Shamili, 2022). Several researchers have leveraged machine learning methodologies in many
parts of the world, including regression trees, random forests, multivariate regression, association rule mining,
and artificial neural networks, to predict crop yields. Utilizing machine-learning (ML) models, crop-yield is taken
as an implicit function of input variables, encompassing factors such as weather components, and soil conditions,
thereby presenting a potentially complex and nonlinear function. According to (Durai & Shamili, 2022; Mgendi,
2024) in the context of Precision Farming (PF), innovative technologies such as ML, Data Mining, Data
Analytics, and Internet of a Thing (IoT) converge to usher in a new era of data-driven agricultural efficiency.
These innovative tools are not just data collectors; they are orchestrators of insights, contributing to a reduction
in manual labor while concurrently amplifying productivity. At the heart of this technological symphony, ML
techniques take center stage, autonomously detecting, identifying, and predicting outcomes by extracting
knowledge, and relationships from the vast datasets under scrutiny (Domingues et al., 2022). In the agricultural
landscape of Nigeria, as delineated by (Jiya et al., 2023), crop cultivation emerges as the predominant pursuit,
carrying significant implications for families and the broader economy.

The accurate prediction of crop yields stands as a critical challenge in the agricultural domain, necessitating
advanced Al-driven solutions (Mgendi, 2024). Farmers confront a plethora of uncertainties, including limited
knowledge about potential harvest excess, unpredictable weather conditions, and dynamic seasonal rainfall
policies. The intricacies extend to the depletion of soil nutrition levels, the volatile availability and cost of
fertilizers, challenges in pest control, and the ever-present specter of post-harvest losses (Oluwole et al., 2022).
These multifaceted factors collectively contribute to a decline in crop production (Durai & Shamili, 2022). The
integration of Al technologies can provide a sophisticated framework for addressing these challenges
comprehensively. Al algorithms can analyze vast datasets, assimilating information on weather patterns, soil
health, fertilizer dynamics, and pest management. This data-driven approach enables precise predictions and
recommendations, empowering farmers with actionable insights to optimize crop yield, resource allocation, and
risk mitigation. Exploiting Al holds the promise of enhancing decision-making processes, promoting sustainable
practices, and fostering resilience in the face of diverse challenges (Durai & Shamili, 2022; Mgendi, 2024).
Traditionally, farmers have adhered to conventional farming practices, which lack precision and result in reduced
productivity and time consumption, particularly in the face of unpredictable climate conditions (Zhou & Ismaeel,
2021; Prabavathi & Chelliah, 2022). Exploiting the use of variable farming resources like soil, fertilizer, and
weather data, including crop information, is of utmost importance. Achieving high yields hinges on the efficient
deployment of these resources (Kwaghtyo & Eke, 2023). In Al-driven agriculture, forecasting weather
conditions, scrutinizing soil properties, suggesting optimal crops for cultivation, and determining precise
quantities of fertilizers and pesticides constitute key facets of precision farming (Zhou & Ismaeel, 2021).
Exploiting cutting-edge technologies such as IoT, data mining, data analytics, and machine learning, precise
farming systematically gathers data, trains sophisticated systems, and forecasts outcomes (Mgendi, 2024). This
technological integration not only minimizes the need for manual labor but also enhances overall productivity in
the agricultural landscape (Durai & Shamili, 2022; Mgendi, 2024). Predicting crop yields stands out as a
formidable challenge in the domain of smart agriculture, prompting the proposal and validation of numerous
models (Kuradusenge et al., 2023; Mgendi, 2024). Given that crop production is influenced by various factors
like weather, climate, seed quality, fertilization, and soil composition, addressing this challenge requires the
integration of diverse datasets (Oluwole et al., 2022). Studies by Bali & Garba (2021), Bali et al. (2021) and Bali

https:/loganjournals.online | Volume 11 Issue 1 | arfPage




Logan Journal of Computer Science, Artificial Intelligence, and Robotics

(2024) demonstrated that neural network-based methods can effectively learn from environmental data, self-
organize their structures, and deliver strong prediction performance.

Awe and Dias (2022) developed a deep-learning model, specifically a generative Artificial Neural Networks
(ANN), to effectively capture and estimate the complex and non-parametric features of agricultural output. The
study was conducted in Nigeria with data covering forty years (19802019). They compared the results with the
autoregressive integrated moving average model (ARIMA). The empirical findings demonstrate the superiority
of the hybrid ANN model over the traditional box-Jenkins ARIMA methodology for forecasting non-stationary
time series. The proposed ANN model significantly improves forecasting accuracy in this context. A fuzzy
inference system (FIS) was developed by (Shuaibu et al., 2021) to forecast rice yield in Jigawa state, Nigeria, for
the period 2021-2030. This forecasting model incorporated variables such as “rainfall, land availability, and
historical rice production data”. The findings of this study indicate that in the year 2022, a total land area of
177,950 hectares will be demanded, along with a rainfall of 873 millimeters, to achieve a rice production of
1,070,000 metric tons. Utilizing an ANN multilayer perceptron (MLP), Alves et al. (2018) predicted soybean
productivity by considering growth habits, sowing density, and agronomic characteristics. The outcomes reveal
a commendable 98% success rate on the training dataset and a noteworthy 72% accuracy on the validation dataset,
demonstrating the network's capability to estimate soybean productivity based on agronomic features, growth
habits, and population density. Recognizing the profound impact of crop production setbacks, this research pivots
toward a comparative exploration of diverse techniques for predicting crop yields.

3. Methodology

3.1.Study Area

This exploration is slated to unfold within the Michika Local Government Area of Adamawa State, strategically
situated in the far northeast, marked by geographic coordinates covering latitude 11°8' South and longitude 15°13'
E. This locality shares a northern boundary with Madagali LGA and extends further to form an international
boundary with the Republic of Cameroon to the northeast. Borno State bounds it to the West, while Mubi and
Hong LGAs define its southern boundary. The Michika LGA, a mosaic of diversity, encompasses four distinctive
development areas: Michika

Metropolitan, Garta, Bazza, and Madzi, sprawled across a land mass measuring 961 km2. The dynamic shade of
this region is woven together by an estimated population of 211,124 occupants. Embarking on a temporal line,
this study is projected for a duration of seven months, from May to November during the Wet Season. This
strategic time frame aims to encapsulate and scrutinize the nuances of environmental dynamics and agricultural
practices, offering a comprehensive insight into the intricacies of the Michika Local Government Area.
3.2.Crop yield parameters

In this area, groundnut, maize, and rice are the predominant crops. The essential weather factors impacting crop
yield include precipitation, air temperature, air moisture, solar radiation, and wind speed. An Al-driven analysis,
guided by, was employed to examine climate and weather parameters. Additionally, historical crop yield data
linked to soil and weather conditions, encompassing temperature, humidity, rainfall, and soil pH, were employed
for the nominated crops in the region. The equipment used for data collection is shown in Table 1.

Table 1 Showing equipment used for data collection

S/N Equipment Use
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1 Soil pH Tester (Excellent Corrosion Proof Soil Fertility Nutrient Meter) Measures soil pH

2 Digital thermometer Measures temperature

3 Hygrometer (wet and dry bulb) Measures humidity

4 Rain gauge (Programmable Water Timer) Measures rainfall
3.3.Selected Crops

Groundnut (Arachis hypogaea), Maize (Zea mays), and Rice (Oryza sativa) datasets were used. The accession of
crop yield data involved collating information from the agricultural department and various farmer cooperatives
within the study area during the Wet season. The major factors of the dataset include District, farm size (ha),
Fertilizers (Nitrogen, Phosphorus, Potash) (Kg), temperature (°C), rainfall (mm), humidity (RH), yield (kg/ha).
May to November was regarded as the Wet Season. The crop yield in kg/ha was taken as the target variable. The
visualization of the crop yield dataset is shown in Figure 1.

District Crop T P e Rainfall pH Humidity FarmSize N 13 L yicld_wvalue

Categorical = Categornical ¥ Number * Number * Number * Number * Numbser - Numbes * Number * Number * Numbes -

entra G/nut 8 77804 58 653 B 0 0 0 3000
Cenmiral G/nut 285 696.12 63 4.6 2 0 27 0 780
Centra "J_:nur 28 73032 "}.i- | 85 . Q 54 0 .B!ﬂ:
Koentral G/nut 345 90802 .6 2 46.74 3 o a1 O 992
Central (Gnut 36 20602 |s. l46.7 05 0 27 o 431
Central G/nut 355 90803 6 34672 1 o (4] 0 456
Centras G/nut 30 908.02 {7 |46.71 2 o 54 0 1120
Central lG/mut 31.5 20802 5.6 |46.7 4 0 108 0 S687
Centrs G/nut 31 S08.01 6 46.74 = 0 AS0 0 5830
Centra G/nut 31 90802 6.5 -4‘._» 76 7 0 a ) 6982
ICentral G/nut 28 04522 6 7957 3 0 0 o 3980
Centras |Grnut 37 81523 5 {788 07 a o o lasa
Central G/nut 27 809.03 5.4 8.5 18 [} o o 703
Centra G/out 285 78024 |65 785 24 0 0 o 1323
Contra G/nut 27 73009 6 |7a.5 1 0 O 0 501
JCentral G/nut 265 7301 6.5 7341 25 0 Q 0 1502
Central G/nut 24 73016 5.1 3.4 3 o o o 4002
Centra G/nut 265 73007 55 734 o7 0 0 o 461
Central G/nut 27 7302 s 50.12 2 0 54 o 1201

Figure 1 presents the visualization of the crop yield dataset.

3.4.DATA PRE-PROCESSING

The data for this exploration passed a series of preprocessing steps aimed at optimizing the accuracy of crop yield
production predictions. MATLAB (2021a) served as the primary development platform for creating and assessing
the proposed model. Initially, a rigorous data cleaning process was executed, involving transformative activities
to exclude any duplicate or irrelevant data points within the dataset. Following this, feature selection was
performed to assess the correlation between features and the target variable, crop yield. This analysis aids in
detecting and retaining the most pertinent features. Subsequently, feature scaling was employed to standardize
numerical features, employing techniques such as min-max scaling or standardization. This normalization
ensures that all numerical features are on a comparable scale. Concurrently, categorical variables were converted
into numerical representations to enhance compatibility with machine learning algorithms. In the final stages of
preprocessing, the dataset was partitioned into distinct sets for training, validation, and testing. The training set
was employed for model training, the validation set contributed to hyperparameter tuning, and the testing set
served as the benchmark for estimating the model's performance.

This research explores four categories of machine learning algorithms: ANN, decision trees (DT), Random Forest
(RF), and support vector machines (SVM). The motivation for exploring machine learning algorithms such as
ANN, DT, RF, and SVM stems from their ability to handle complex, nonlinear connections within data and give
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accurate predictions for diverse agricultural applications. These algorithms are well-suited to optimize crop yield
predictions due to their inflexibility, scalability, and rigidity in modeling intricate patterns and relations between
various environmental, soil, and management factors. The activity diagram for the model is shown in Figure 2.

i
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Figure 2: The activity diagram depicting the flow of tasks and decisions in the crop yield prediction process.

1) Data Collection: Relevant historical data on crop yields, climate, soil conditions, and other relevant factors
were collected.
i1) Data Preprocessing: The data was prepared and standardized, handling missing values, scaling, and
encoding categorical variables. The data from inputs and target datasets were standardized between zero
and one using (1) to avoid large numeric ranges from the values of the predictor variables.
x_xmin
Xnornal =
xmax —xmin
(1) where x 1s the respective variable, xmin is the minimum value, xmax is the maximum, and xnormal is the
standardized value.
ii1) Split Data: The data was divided into training and testing datasets.
iv) Model Selection: Each of the machine learning models ANN, DT, RF, and SVM was designated for training.
v) Model Training: Each model was trained on the training dataset.
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vi) Model Evaluation: The performance of each model using appropriate metrics was estimated. The statistical
metrics employed to estimate the performance of artificial intelligence-driven predictive models are RMSE
(Root Mean Squared Error), R-squared, and Mean Absolute Error (MAE). The motivation for using RMSE,
R-squared, and MAE to evaluate models in crop yield prediction is to give complementary insights into
accuracy and reliability. RMSE measures the average squared error, lower values indicate better model
performance, correct large errors, and assess model accuracy and sensitivity to variability. MAE measures
the average absolute error, lower values indicate better performance, treat all deviations equally, and balance
average accuracy while being robust to outliers. R? indicates the proportion of variance explained by the
model; values closer to 1 indicate better performance, while negative values suggest the model performs
worse than a simple mean predictor. The training errors were tracked using the RMSE function, which is
specified as:

In 2

RMSE = JDZ—I’I (ytargeti - ynet)
)

R?, or the relationship between the modeled data value and the observed data value is examined via the coefficient
of determination given by:
" (x—x)2

R2 =1-in=1 i2 3)

Oi=1(x—x) Where
xi = the observed value x = the modeled
value n = the number of errors, 2 =
summation symbol,
(xi — x)° = the square of absolute errors. R’ = the
correlation coefficient

x = the average value

The Mean Absolute Error (MAE) represents the average of the absolute differences between the actual target
values and the predicted values. It is mathematically defined as shown in (4).

IN | - ‘
MAE: _Dyl' ‘ —y[

yi=l
(4) vii) Hyperparameter Tuning: The model hyperparameters were optimized for improved model performance.

viil) Prediction: The trained models were used to predict crop yield for new data.

ix)  Results Visualization: The output was visualized and the predictions were compared with actual values
using charts or plots.
This entire process was implemented in MATLAB using built-in functions; fitcensemble, fitctree, svm, and
trainNetwork functions for each machine learning model, along with built-in evaluation functions; crossval,
cvLoss, and predict.
4. Interpretation of Results and Discussion
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The results from the four machine learning models; ANN, DT, RF, and SVM as shown in Table 2 provide valuable
insights into the performance of the models in predicting crop yield. The performance of each model was
discussed based on the three metrics: RMSE, MAE, and R2.

Table 2 present a clear comparison of how each model performs evaluated using RMSE, MAE, and R2.

Model RMSE MAE R2

DT 5992.0 3841.8 -2.3817
SVM 3315.6 2593.9 -0.035425
RF 3430.6 2733.0 -0.10846
ANN 3136.8 2502.2 0.073255

DT: The high RMSE (5992) value for the DT model indicates that its predictions diverge significantly from the
actual yield values on average. This suggests that the DT could not capture the complexity of the relationship
between the predictors and the target variable well. MAE: Similarly, the MAE (3841.8) is relatively high,
meaning that the average absolute error between the predicted and actual values is large. This further supports
the conclusion that the model is struggling to predict crop yields accurately. The negative R* (-2.3817) value
indicates that the DT model is performing worse than a simple mean-based model (i.e., always predicting the
average yield). This is a clear sign of poor model performance and suggests that the DT is overfitting or capturing
very little of the variance in the target variable. This shows that the DT model is underperforming, likely due to
overfitting or the inability to capture the complex patterns in the data. The negative R? and high RMSE/MAE
suggest that this model is not suitable for crop yield prediction in this case.

RF: with RMSE (3430.6) is slightly worse than SVM, indicating higher error. It is the third best, slightly worse
than SVM with MAE (2733). R? (-0.10846) is negative, meaning the model also performs worse than the baseline
mean predictor. This indicates that RF struggles to generalize well and has suboptimal performance compared to
SVM and ANN.

SVM: This is the second best after ANN with RMSE (3315.6), indicating decent predictive accuracy. Second best
after ANN with MAE (2593.9). The R? (0.035425) 1s close to zero, showing the model explains very little of the
variance and marginally outperforms the baseline. This shows that SVM performs moderately well but has limited
predictive power.

ANN: the lowest RMSE (3136.8), indicates the most accurate predictions. The lowest MAE (2502.2), is
suggesting the smallest average prediction errors. R? (0.073255) is slightly positive, indicating the model explains
a small amount of variance and outperforms the baseline predictor. This indicates that ANN outperforms the other
models in all metrics, making it the best-suited model for this dataset and problem.

5. The Comparison of Models
The bar chart in Figure 3 illustrates the comparison of RMSE values for four different machine learning models:
DT, SVM, RF, and ANN.
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Comparison of RMSE
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Figure 3 visualizes a comparison of the RSME of the models

DT is the worst-performing model, with high RMSE and MAE values, and a very negative R?, indicating that the
model is poorly fitted to the data and might be overfitting or not capturing the relevant features of the dataset.
The bar chart in Figure 4 presents a comparison of the MAE values for four different machine learning models:
DT, SVM, RF, and ANN.
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Figure 4 visualizes a comparison of the MAE of the models
SVM and RF: Both perform similarly, with SVM slightly outperforming RF in terms of RMSE and MAE. Both
models show negative R? values, indicating they are not suitable for explaining the variance in crop yields. They
are more accurate than DT, but not as effective as ANN. The bar chart in Figure 5 compares the MAE values
across four machine-learning models: DT, SVM, RF, and ANN.
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Figure 5 visualizes a comparison of the R? of the models
Best Performing Model: ANN consistently outperforms the other models in all metrics, followed by SVM. RF
and DT perform poorly, with DT being the worst. Among the models, ANN shows the best performance in terms
of RMSE, MAE, and R?. The generally low or negative R? values indicate that all models, except ANN, struggle
to capture the underlying patterns in the data. This suggests that the available features (Temperature, Rainfall,
Humidity, and District) might not fully capture the complexity of the factors influencing crop yield, or that further
feature engineering, data preprocessing, or model tuning may be required for better predictive accuracy. However,
ANN’s positive R? suggests it is slightly capable of explaining the variance, and the most reliable model for
predicting crop yield.
6. Conclusion
This research evaluates various yield prediction techniques, analyzing their effectiveness to recommend strategies
based on weather parameters and nutrient requirements. The study developed a predictive model capable of
accurately forecasting crop yields using features deduced from comprehensive datasets. This model offers
farmers in the study area actionable insights into optimal crop varieties, fertilizer application, and prevailing
environmental conditions, thereby enhancing decision-making and reducing potential losses. The findings
emphasize the transformative potential of machine learning (DT, RF, and SVM) in optimizing agricultural
productivity. While the ANN model demonstrated superior performance by minimizing prediction errors, the
overall predictive accuracy was constrained, as indicated by low R? values. Addressing these limitations presents
an important opportunity for future research, which could incorporate real-time data from IoT sensors, scale the
model to different crops and regions, and develop more robust, user-friendly tools to promote widespread
adoption. Additionally, this study highlights the importance of optimizing hyperparameters, such as learning rate,
number of neurons, and activation functions, to improve predictive accuracy. Exploring hybrid modeling
combining ANN with other techniques is also recommended, as they have the potential to leverage
complementary strengths of various approaches, thereby enhancing overall model performance.
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