

JOURNAL OF BASIC AND LIFE SCIENCES 12(1) 2025 JBLS

ISSN: 3067-2651

BIOACTIVITY ASSESSMENT OF SOME NIGERIAN MEDICINAL PLANTS WITH POTENTIAL ANTI-DIABETIC

Eghosa Grace Osasuyi

Department of Medical Biochemistry, University of Benin DOI: https://doi.org/10.5281/zenodo.15830251

Abstract: A major therapeutic approach presently used in managing Type 2 Diabetes mellitus is the use of glucosidase and -amylase inhibitors. Hence the growing attention in the quest for medicinal plants of natural sources with inhibitory potentials on these enzymes. This study was done, therefore, to determine the inhibitory potentials of the different parts of three medicinal plants; *Nigella sativum* (seeds), *Spondias mombin* (leaves and stem bark), and *Picralima nitida* (seeds and mesocarp) on α- amylase and α- glucosidase as well as to determine inhibition kinetics. The *in vitro* α-amylase and α-glucosidase inhibitory activities of the plant extract were assessed using 3,5-dinitrosalicylic acid (DNS) and p-nitro-phenyl-a-D glucopyranoside (p-NPG) respectively. The results indicated that all plant extracts assayed exhibited better α- glucosidase inhibitory effects than the reference drug(acarbose), as indicated by the higher IC₅₀ (76.10 μg/mL) value of the reference drug, whereas the n-hexane extract of *N. sativum* seeds gave the best α-amylase effect (IC₅₀ = 35.83 μg/mL). All the extracts exhibited an "uncompetitive" type of inhibition pattern. Our findings hence support the use of these plants in the management of diabetic conditions.

Keywords: Nigella sativum, Spondias mombin, Picralima nitida, α-amylase, α-glucosidase, Acarbose

INTRODUCTION

Diabetes is a metabolic disease with a growing incidence worldwide. Literature shows that about 1.7 million people in Nigeria are living with diabetes and their ages ranging from 20 and 79 years (Gbolade, 2009). Type 2 Diabetes mellitus is the most prevalent kind of Diabetes and is far more than 80% of the reported cases (Unwin *et al.*, 2009). A primary therapeutic target for the management of type 2 diabetes is the use of α -glucosidase and α -amylase enzyme inhibitors to decrease glucose uptake from the intestine (Sim *et al.*, 2010). It is thought that the sudden rise in blood glucose levels after a meal can be efficiently managed by inhibiting these enzymes.

The anti-diabetic potential of many plant species has been reported (Grover *et al.*, 2002). The hypoglycemic properties of some medicinal plants act by slowing down glucose uptake from the intestine by inhibiting enzymes like pancreatic amylase that hydrolyze carbohydrates. Moreover, over two hundred compounds with blood glucose-lowering potentials have been isolated (Marles and Farnsworth, 1994). Therefore, there is the need to screen for α-amylase and α-glucosidase inhibitors from plants. The reliance on plant and plant products for several thousands of years is linked to their acceptability and fewer disadvantages. About eighty percent of the populace is estimated to rely solely on plant-based preparations for their healthcare (Prabhakar *et al.*, 2013). Medicinal plants hardly generate any unwanted effects like those observed from conventional drugs. The plant *P. nitida*

(Staph) belongs to the Apocynaceae family. The plant has been reported to be beneficial in traditional medicine. Several studies have reported on some of the beneficial effects of the plant (Dzotam and Kuete, 2023; Ubulom *et al.*, 2012; Aguwa *et al.*, 2001). *N sativa* (Linn). belongs to the Ranunculaceae family and is usually called black cumin or black seeds, and it is a small elegant herb. Aftab *et al.* (2013) have reported on the use of the seeds of this plant as a cure for various disease conditions. Also, it is used to stop vomiting (Sharma *et al.*, 2009), and the oils have also been shown to possess radical Scavenging effects (Altan, 2007; Burits and Bucar, 2000). *S. mombin* (Linn) is a fructiferous plant from belonging to Anarcardiaceae family. Several scientific studies exist on the importance of all parts of this plant (Martinez, 2005). Based on the medicinal properties of *P. nitida*, *N. sativa* and *S. mombin*, this study was undertaken to explore their inhibitory effects on αamylase and α-glucosidase.

MATERIALS AND METHODS Collection of Plant Materials

Picralima nitida

Mature *P. nitida* fruits were purchased from a local market in Benin City, Nigeria. They were washed thoroughly, after which the seeds were separated from the mesocarp, and both were air-dried separately for 14 days. The dried seeds and mesocarp were pulverized separately using a mechanical blender, and 200 g of the powdered samples were each macerated in ethanol (800 mL) to obtain ethanol extracts of the seeds and mesocarp of *P. nitida*, respectively.

Nigella sativum

Seeds of *Nigella sativum* were also bought from a local market in Benin City, Nigeria. They were shade dried and pulverized. The ground seeds (100 g) were macerated in ethanol (400 mL), and another 100 g were macerated in nhexane (400 mL). The extracts obtained were filtered, and the filtrate was subjected to lyophilization to obtain powdered extracts, which were used for the following assays.

Spondias mombin

S. mombin leaves and stem bark were obtained from gardens around the University of Benin campus, Benin City. They were air-dried, ground and 200 g of the powdered samples were each macerated in ethanol and lyophilized to obtain ethanol extracts of S. mombin leaves and stem bark, which were used for the following assays. All plants collected were initially identified and authenticated in the Department of Plant Biology and Biotechnology, University of Benin, Benin City. The voucher specimen was deposited with herbarium numbers UBH_N 506, UBH_P 424, and UBH_S 345 for N. sativum, P. nitida fruit, and S. mombin, respectively.

Alpha Amylase Inhibitory Assay

The test samples were prepared by adding 200 μ L of 0.02 M sodium phosphate buffer, 20 μ L of the enzyme, and the plant extracts in the concentration range of 20- 100 mg/mL, after which the test tubes were incubated for 10 min at 25°C. Exactly 200 μ L of starch was then added to all test tubes then 400 μ l 3,5-dinitrosalicylic acid (DNS) reagent was added to stop the reaction. The test tubes containing the samples were boiled in a water bath for 5 min. After diluting with 10 mL of distilled water, the mixture was left to cool, and absorbance was read at 540 nm. The control samples were also prepared. Percentage inhibition was determined using the formula:

```
= \frac{\text{absorbance (control)} - \text{absorbance (extract)}}{\text{absorbance of control}} x 100
```

In vitro Alpha-Glucosidase Inhibitory Assay The alpha-glucosidase enzyme extract was prepared by dissolving in 100 mM phosphate buffer pH 6.8. Pnitrophenyl $-\alpha$ -D-glucopyranoside served as the substrate. Concentrations of 200-1000 μ g/mL of the various plant extracts were prepared and added to test tubes containing 320 μ L of 100 mM phosphate buffer pH 6.8 at 30°C for 5 min. NaOH (3 mL, 50 mM) was added to the mixture, and the

https://loganjournals.online | Volume 12 Issue 1 | 12 | P a g e

absorbance was measured at 410 nm. Plant extracts were not added to the control samples. The percentage inhibition was determined as shown below. Acarbose served as a reference drug.

Percentage Inhibition

absorbance (control) – absorbance (extract) x 100 absorbance of control

Enzyme Kinetics

The mode of Inhibition was determined using sigmoid plot interpolation characteristics (Hill's slope), hyperbola plot interpolation characteristics (viz maximum binding capacity Bmax, and dissociation constant, Kd), as well as Michaelis Mentenkinetics (Km and Vmax). These were used to determine the IC₅₀ of the extracts. The IC₅₀ shows how potent the extracts are in inhibiting the enzymes. The Bmax and Kd represent the degree of binding and period of Inhibition, which indicates the level of efficacy of the extracts.

Statistical Analysis

The means, SEM, and IC₅₀ were determined using Graph Pad Prism Software, inc. (version 6.01, 2012). $P \le 0.05$ represented a statistically significant difference.

RESULTS α - Amylase Inhibition Assay

The results of α -amylase inhibitory potential of N. sativum (seeds), S. mombin (leaf and stem bark), and P. nitida (seeds and mesocarp) are presented in Table 1, Figures 1 and 2. The result indicated that the n-hexane extract of Nigella sativum seed gave the highest α -amylase inhibitory effect (IC₅₀ = 35.83 µg/mL); this was followed closely by the ethanol extract of Nigella sativum seeds (IC₅₀= 36.13 μ g/mL), then by ethanol extract of P. nitida seed, S. mombin leaves, S. mombin stem bark and finally P. nitida mesocarp with IC₅₀ values of 36.14 µg/mL, 60.35 μg/mL, 64.20 μg/mL and 67.30 μg/mL respectively.

α -Glucosidase Inhibition Assay

The α -glucosidase inhibitory activity results are shown in Table 2, Figures 3 and 4. The n-hexane extracts of N. sativum also gave the best α -glucosidase effect (IC₅₀ = 44.24 µg/mL) (Table 2). This was closely followed by ethanol extracts of N. sativum seeds, S. mombin stem bark, S. mombin leaf, P. nitida mesocarp, and then P. nitida seed with IC₅₀ values of 44.87 μg/mL, 46.85 μg/mL, 48.99 μg/mL, 49.84 μg/mL, and 64.19 μg/mL respectively.

DISCUSSION

Plants provide valuable substances for managing human diseases, including Diabetes. A likely mechanism for these blood glucose-reducing effects is slowing the absorption of sugars ingested. Several species of plant have been investigated for their hypoglycemic effect, and these plants have varying mechanism of action. The present study clearly shows the anti-diabetic potentials of N. sativum, S. mombin leaf and stem bark, and P. nitida seeds and mesocarp through inhibitory effects on alpha-amylase and alpha-glucosidase enzymes, which are vital targets for a recent therapeutic approach in managing diabetes.

Eluehike et al. Activity-Based Investigation of the Possible Anti-Diabetic Potentials of...

Table 1: Dose-response characteristics of the influence of extracts on alpha-amylase activity.

	DOSE- RESPONSE CHARACTER ISTICS		SIGMOID PLOT INTERPOLAT ION CHARACTER ISTICS		PLOT INTERPOLAT ION		MICHAELISKI NETICS	MENT EN'S	STRAIGHT- LINE REGRESSION INTERPOLAT ION CHARACTER ISTICS	
	LogIC 5 0	IC50 (μg/mL)	R ²	Hill's slope	Bmax	Kd	Km	Vmax	Y- intercept	slope
Acarbos e	1.703	50.51	0.974 9	4.148	- 4.14× 1 019	- 1.16×10 ¹ 8	4.25×10 ¹⁶	1.51×10	-199.80	149.5 0
S. mombin leaf	1.781	60.35	0.945 7	3.737	1.39× 1 023	4.66×10 ²	1.37×10 ²³	3.08×10 24	-182.00	133.7 0
S. mombin stem	1.808	64.20	0.999 6	9.117	3.08× 1 035	1.07×10 ³	1.07×10 ³⁴	3.08×10 35	-217.60	152.9 0
Picralim a seed	1.558	36.14	0.952	3.901	1.28× 1 018	3.09×10 ¹	3.09×10 ¹⁶	1.28×10	-173.50	140.5 0
Picralim a mesocar p	1.827	67.13	0.895 6	3.910	1.81× 1 038	6.79×10 ³	>1.07×10 ³⁴	Value too large	-171.40	124.5 0
N sativu m (n-hexane)	1.554	35.83	0.974 7	4.377		- 2.95×10 ¹ 4	5.33×10 ¹²	2.28×10	-175.20	142.1 0
N. sativum seed (ethanol)	1.558	36.13	0.944 9	3.766		1.40×10 ¹	1.40×10 ¹³	5.70×10	-165.10	134.9 0

Maximum binding capacity, Bmax ($\mu g/mL$); Dissociation constant, Kd; Michaelis-Menten's constant, Km (mM) and maximum rate, Vmax (mM/min).

96

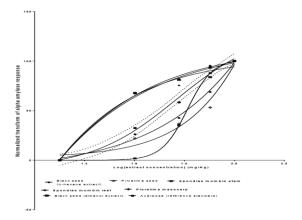
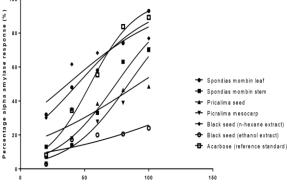



Figure 1: Dose-response curve of alpha-amylase inhibition by the extracts and acarbose (reference standard).

log [extract], mg/ml

Figure 2: Percentage response curve of alpha-amylase inhibition by the extracts and acarbose (reference standard).

Five concentrations ranging from 20-100 μ g/mL of the different plant extracts were tested for their α -amylase and α -glucosidase potentials. For the alpha-amylase inhibition assays, increasing the concentration of the extract led to a dose-dependent Inhibition of alpha-amylase for all extracts of the plants. At the highest concentration (100 μ g/mL) of extracts, the n-hexane extract of *P. nitida* seed gave the highest alpha-amylase inhibition of 76.89%. This value was also corroborated by its lower IC₅₀ values. All plant extracts did not exhibit a dose-dependent reduction in alphaglucosidase activity for the alpha-glucosidase assay, as higher inhibition was observed at the lowest concentration (20 μ g/mL). Alpha amylase inhibitory potential of the different plant extracts is shown in Table 1. The result indicates that the n-hexane extract of *N. sativum* seed gave the best α -amylase inhibitory effect (IC₅₀ = 35.83 μ g/mL); this was followed closely by the ethanol extract of Nigella sativum seeds (IC₅₀= 36.13 μ g/mL), then by ethanol extract of *P. nitida* seed, *S. mombin* leaves, *S. mombin* stem bark and finally *P. nitida* mesocarp with IC₅₀ values of 36.14 μ g/mL, 60.35 μ g/mL, 64.20 μ g/mL and 67.30 μ g/mL respectively. We noted that the n-hexane extract of *P. nitida* seeds gave a better α -amylase inhibitory effect than the reference drug. Also, only *P. nitida* seeds, ethanol, and hexane extract of *N. sativum* significantly inhibited alphaamylase.

Five concentrations ranging from 20-100 μ g/mL of the different plant extracts were tested for their α -amylase and α -glucosidase potentials. For the alpha-amylase inhibition assays, increasing the concentration of the extract led to a dose-dependent Inhibition of alpha-amylase for all extracts of the plants. At the highest concentration (100 μ g/mL) of extracts, the n-hexane extract of *P. nitida* seed gave the highest alpha-amylase inhibition of 76.89%. This value was also corroborated by its lower IC₅₀ values. All plant extracts did not exhibit a dose-dependent

Journal of Basic and Life Sciences

reduction in alphaglucosidase activity for the alpha-glucosidase assay, as higher inhibition was observed at the lowest concentration (20 μ g/mL). Alpha amylase inhibitory potential of the different plant extracts is shown in Table 1. The result indicates that the n-hexane extract of *N. sativum* seed gave the best α -amylase inhibitory effect (IC₅₀ = 35.83 μ g/mL); this was followed closely by the ethanol extract of Nigella sativum seeds (IC₅₀= 36.13 μ g/mL), then by ethanol extract of *P. nitida* seed, *S. mombin* leaves, *S. mombin* stem bark and finally *P. nitida* mesocarp with IC₅₀ values of 36.14 μ g/mL, 60.35 μ g/mL, 64.20 μ g/mL and 67.30 μ g/mL respectively. We noted that the n-hexane extract of *P. nitida* seeds gave a better α -amylase inhibitory effect than the reference drug. Also, only *P. nitida* seeds, ethanol, and hexane extract of *N. sativum* significantly inhibited alphaamylase.

The highest inhibitory effects observed for the *N. sativum* extract may have been expected as various research has reported the hypoglycemic and anti-diabetic effects of seeds of *N. sativum* seeds *in vivo* (Farah *et al.*, 2002; Kanter *et al.*, 2008; Matira *et al.*, 2008; Najmi *et al.*, 2008; Meddah *et al.*, 2009; Mohamed *et al.*, 2009; Nadia and Taha, 2009). The observed effects may also not be unconnected with the rich active components (Thymoquinone, thymohydroquinone, and other essential compounds) and minerals like Copper, Phosphorus, Zinc, and iron found in the seeds of this plant.

Eluehike et al. Activity-Based Investigation of the Possible Anti-Diabetic Potentials of...

16 | Page

Table 2: Dose-response characteristics of the influence of extracts on alpha-glucosidase activity.

	DOSE- RESPONSE CHARACTERI STICS		SIGMOID PLOT INTERPOLATI ON CHARACTERI STICS		HYPERBOLA PLOT INTERPOLATI ON CHARACTERI STICS		NETICS	MENTE STRAIGHT- N'S LINE REGRESSIC INTERPOLA ON CHARACTE STICS		SSION OLATI
	LogIC ₅	IC50 (μg/mL)	R ²	Hill's slope	Bmax	Kd	Km	Vmax	Y- intercept	1
Acarb ose	1.881	76.10	0.9143	6.190	88.49	0.1143	2.395×10 ³³	5.388×1 0 ³⁴	-177.20	123.6 0
S. mombi n leaf	1.690	48.99	0.9604	3.545	93.54	0.1977	5.496×10 ²⁵	1.951×1 0 ²⁷	-190.50	144.2 0
S. mombi n stem		46.85	0.9735	3.258	115.80	0.7469	2.644×10 ²⁶	9.430×1 0 ²⁷	-181.10	139.0 0
Picrali ma seed		64.19	0.9513		456.20		1.182×10 ¹²	0 ¹³	-185.20	134.2
Picrali ma mesoc arp	1.698	49.84	0.9351	2.863	58.82	0.6444	4.770×10 ²⁵	1.605×1 0 ²⁷	-172.20	131.9
N sativu m seed (n- hexan e)	1.646	44.24	0.9832	3.943	103.70	3.443	2.960×10 ²²	1.135×1 0 ²⁴	-193.80	148.9 0
N sativu m seed (ethan ol)	1.652	44.87	0.9845	3.697	117.50	2.421	1.022×10 ²³	3.790×1 0 ²⁴	-185.70	143.1 0

Maximum binding capacity, Bmax (μg/mL); Dissociation constant, Kd; Michaelis-Menten's constant, Km (mM) and maximum rate, Vmax (mM/min)

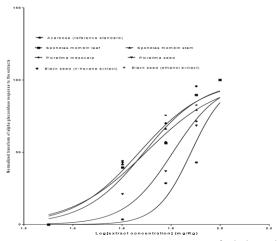
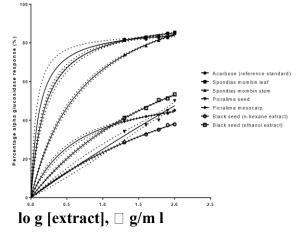



Figure 3: Dose-response curve of alpha-glucosidase Inhibition by the extracts and acarbose (reference standard).

Figure 4: Percentage response curve of alpha-glucosidase Inhibition by the extracts and acarbose (reference standard).

Fred-Jaiyesimi *et al.* (2009) have established the *in vitro* hypoglycemic effects of the leaf of *S. mombin*. For the αglucosidase inhibitory study, the n-hexane extracts of black seed also gave the best α-glucosidase result (IC₅₀ =44.24 μg/mL) (Table 2). This was closely followed by ethanol extracts of *N. sativum* seeds, *S. mombin* stem bark, *S. mombin* leaf, *P. nitida* mesocarp, and then *P. nitida* seed with IC₅₀ values of 44.87 μg/mL, 46.85 μg/mL, 48.99 μg/mL, 49.84 μg/mL, and 64.19 μg/mL respectively. All plant extracts had better alpha-glucosidase inhibitory effects than the standard acarbose. The IC₅₀, Kd, and Vmax give us an idea of the potency of a plant (meaning that the higher these kinetics characteristics, the lower the capacity to delay the rate of the enzyme-catalyzed reactions). In contrast, the Bmax gives information about the effectiveness of the extracts (i.e., the lower this value, the lower the efficacy of the extracts). Although we did not record the highest Bmax value for the n-hexane extract of *N. sativum* seeds when compared with other plant extracts, the observed Bmax for α-amylase and α-glucosidase study respectively was nonetheless higher than that of the standard acarbose (Tables 1, 2).

The enzyme kinetics were determined to obtain further information regarding the type and mode of inhibition of the different plant extracts on alpha-amylase and alphaglucosidase. For the kinetic model of the plant extracts on alpha-amylase, all plant extracts except the ethanol extract of *P. nitida* seed showed a mixed non-competitive mode of inhibition as evidenced by their different Km (the affinity of the enzymes for the substrate) and Vmax (the velocity of reaction). The ethanol extract of *P. nitida* seeds resulted in a decrease in both Km and Vmax. Therefore, depicts an uncompetitive manner of inhibition. Uncompetitive inhibitors bind to the ES complex by forming an ES-inhibitor complex (Bisswanger, 2008; Cornish-Bowden, 2013). This complex decreases the

affinity of the substrate to attach to the active site of the enzyme, thus reducing the reaction rate (Cornish-Bowden, 1974; Bachhawat *et al.*, 2011).

We also noted that the ethanol extract of P. nitida seeds, N. sativum seeds, and the n-hexane extract of Nigella sativum seeds inhibited alpha-glucosidase uncompetitively. In contrast, ethanol extract of P. nitida mesocarp, S. mombin leaves, and stem bark exhibited a mixed type of inhibition on alpha-glucosidase. This type of inhibitor binds to the enzyme in its free and bound state, thus hindering the substrate from binding (Bisswanger, 2008; CornishBowden, 2013) or enhancing substrate binding affinity and reducing reaction rate (Cornish-Bowden, 1974). Enzyme inhibition and kinetic studies are vital tools that help differentiate the inhibitory mechanism types. Several studies have reported that polyphenolic compounds from plants showed competitive, non-competitive, and mixed inhibition patterns on α -amylase α -glucosidase enzymes (Williamson et al., 1992; Oates, 2008; Yao et al., 2010; Ghosh et al., 2014).

CONCLUSION

This research has revealed the ability of three anti-diabetic medicinal plants to inhibit alpha-amylase and alphaglucosidase and also gave insight into their mode and type of inhibition. Among the three plants, N. sativum showed the highest α -amylase and α -glucosidase inhibitory effects, suggesting and supporting this plant's use as a new antidiabetic agent of natural source.

REFERENCES

- Aftab, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., Damanhouri, Z. A., & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine, 3(5), 337–352.
- Aguwa, C. N., Ukwe, C. V., Inya-Agha, S. I., & Okonta, J. M. (2001). Anti-diabetic effect of Picralima nitida aqueous seed extract in experimental rabbit model. Journal of Natural Remedies, 1, 135–139.
- Altan, M. F. (2007). Effects of Nigella sativa and human parathyroid hormone on bone mass and strength in diabetic rats. Biological Trace Element Research, 116(3), 321–328.
- Bachhawat, J. A., Shihabudeen, M. S., & Thirumurugan, K. (2011). Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. International Journal of Pharmaceutical Sciences Research, 3(4), 267–274.
- Bisswanger, H. (2008). Enzyme kinetics: Principles and methods. John Wiley & Sons.
- Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328.
- Cornish-Bowden, A. (1974). A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochemical Journal, 137(1), 143.
- Cornish-Bowden, A. (2013). Fundamentals of enzyme kinetics. John Wiley & Sons.
- Dzotam, J. K., & Kuete, V. (2023). Picralima nitida as a potential source of antibacterial agents. Advances in Botanical Research, 107, 275–288.

https://loganjournals.online | Volume 12 Issue 1 | 19 | P a g e

- Farah, K. M., Atoji, Y., Shimizu, Y., & Takewaki, T. (2002). Insulinotropic properties of Nigella sativa oil in streptozotocin plus nicotinamide diabetic hamsters. Research in Veterinary Science, 73(3), 279–282.
- Fred-Jaiyesimi, A., Kio, A., & Richard, W. (2009). Amylase inhibitory effect of olean-12-en-3-yl (9Z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chemistry, 116(1), 285–288.
- Gbolade, A. A. (2009). Inventory of anti-diabetic plants in selected districts of Lagos State, Nigeria. Journal of Ethnopharmacology, 121(1), 135–139.
- Ghosh, S., More, P., Derle, A., Patil, A. B., Markad, P., Asok, A., Kumbhar, N., Shaikh, M. L., Ramanamurthy, B., Shinde, V. S., & Dhavale, D. D. (2014). Diosgenin from Dioscorea bulbifera: Novel hit for treatment of type II diabetes mellitus with inhibitory activity against α-amylase and α-glucosidase. PloS One, 9(9), e106039.
- Grover, J. K., Yadav, S., & Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology, 81(1), 81–100.
- Kanter, M. (2008). Effects of Nigella sativa and its major constituent, thymoquinone, on sciatic nerves in experimental diabetic neuropathy. Neurochemical Research, 33(1), 87–96.
- Marles, R., & Farnsworth, N. (1994). Plants as sources of anti-diabetic agents. In H. Wagner & N. R. Farnsworth (Eds.), Economic and Medicinal Plant Research (pp. 149–187). Academic Press Ltd.
- Martinez, M. (2005). Structural investigation of the polysaccharide of Spondias mombin gum. Carbohydrate Polymers, 43, 105–112.
- Matira, K., & Zesmin, F. D. (2008). Effects of the crude and the n-hexane extract of Nigella sativa Linn. (kalajira) upon diabetic rats. Bangladesh Journal of Pharmacology, 4, 17–20.
- Meddah, B., Ducroc, R., El-Abbes-Faouzi, M., Eto, B., Mahraoui, L., Benhaddou-Andaloussi, A., Martineau, L. C., Cherrah, Y., & Haddad, P. S. (2009). Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. Journal of Ethnopharmacology, 121(3), 419–424.
- Mohamed, A. M., EL-Sharkawy, F. Z., Ahmed, S. A. A., Aziz, W. M., & Badary, O. A. (2009). Glycemic control and therapeutic effect of Nigella sativa and Curcuma longa on rats with streptozotocin-induced diabetic hepatopathy. Journal of Pharmacology and Toxicology, 4(2), 45–57.
- Nadia, M. H., & Taha, R. A. (2009). Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacology, 84, 127–134.
- Najmi, A., Nasiruddin, M., Khan, R. A., & Haque, S. F. (2008). Effect of Nigella sativa oil on various clinical and biochemical parameters of insulin resistance syndrome. International Journal of Diabetes in Developing Countries, 28, 11–14.
- Oates, P. J. (2008). Aldose reductase, still a compelling target for diabetic neuropathy. Current Drug Targets, 9, 14–36.

- Prabhakar, V. K., Jaidka, A., & Singh, R. (2013). In vitro study on α-amylase inhibitory activity and phytochemical screening of few Indian medicinal plants having anti-diabetic properties. International Journal of Science Research, 3(8), 1–6.
- Sharma, N. K., Ahirwar, D., Jhade, D., & Gupta, S. (2009). Medicinal and pharmacological potential of Nigella sativa: A review. Ethnobotanical Leaflets, 13(7), 946–955.
- Sim, L., Jayakanthan, K., Mohan, S., Nasi, R., Johnston, B. D., Pinto, B. M., & Rose, D. R. (2010). New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: Structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry, 49(3), 443–451.
- Ubulom, P. M., Imandeh, N. G., Udobi, C. E., & Ilya, I. (2012). Larvicidal and antifungal properties of Picralima nitida (Apocynaceae) leaf extracts. European Journal of Medicinal Plants, 2(2), 132–139.
- Unwin, N., Whiting, D., Gan, D., Jacqmain, O., & Ghyoot, G. (2009). IDF Diabetes Atlas (4th ed., pp. 81–90). International Diabetes Federation.
- Williamson, J. R., Kilo, C., & Tilton, R. G. (1992). Hyperglycemia, diabetes, and vascular disease. Oxford University Press.
- Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Antioxidant and α-glucosidase inhibitory activity of colored grains in China. Journal of Agricultural and Food Chemistry, 58(2), 770–774.

Volume 12 Issue 1 21 | Page