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Abstract: In this paper, we obtain the exact solutions of two fractional power series. A new multiplication of
fractional power series and Jumarie type of Riemann-Liouville (R-L) fractional calculus play important roles
in this article. In fact, our results are generalizations of ordinary calculus results.
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l. INTRODUCTION

During the 18th and 19th centuries, there were many famous scientists such as Euler, Laplace, Fourier, Abel,
Liouville, Grunwald, Letnikov, Riemann, and some others who reported interesting results within fractional
calculus. In recent years, fractional calculus has become an increasingly popular research area due to its effective
applications in different scientific fields such as economics, engineering, dynamics, biology, control theory,
mechanics, chaos theory, and so on [1-10].

However, the definition of fractional derivative is not unique. Common definitions include Riemann-Liouville
(R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and
Jumarie’s modified R-L fractional derivative [11-14]. Because Jumarie’s modified R-L fractional derivative helps
avoid non-zero fractional derivative of constant functions, it is easier to use this definition to associate fractional
calculus with classical calculus.

In this paper, we find the exact solutions of the following two « -fractional power series:

0 (4n)! (4n+1)
Ln=1 T((an+ha+D) (1)
and
1 4

Zn=0 Tanar* na (2)
where 0 < a < 1. Jumarie type of R-L fractional calculus and a new multiplication of fractional power series play
important roles in this paper. And our results are generalizations of the results in classical calculus.
1. PRELIMINARIES
At first, we introduce the fractional derivative used in this paper and its properties.
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Definition 2.1 ([15]): Let 0 <a <1, and x o be a real number. The Jumarie type of Riemann-Liouville (R-L) « -
fractional derivative is defined by

( DI)Fl = x f(t)f (x? .(3)
x0X ra-aydx x0 @-t)a dt
And the Jumarie type of Riemann-Liouville a -fractional integral is defined by
( 1)1 =—] x0X ra)x*0 xS\t e dt ,(4) where I'( ) is the gamma function. On the other

hand, for any positive integer p , we define (xoD x2 )P [f (x )] =

(x0D x®)(x0D x®) =+ (xoD x%)[f (x)], the p -th order a -fractional derivative of f (x).

Proposition 2.2 ([16]): Ifa, B, x 0, C are real numbers and [ > a >0, then

(oD x))[xFl=T_("BE—"a:"yxbk e, (5)

and

(oD x*)[C]1=0.(6)

Next, we introduce the definition of fractional power series.

Definition 2.3: Suppose that x and an are real numbers for all n, and 0 <a < 1. If the function f «: [a,b ] —

R can be expressed as f a(xa) 200 T 1) F(na+1) x " then we say that f «(x @) is a a -fractional power series.
In the following, a new multiplication of fractional power series is introduced.
Definition 2.4 ([17]): If 0<a <1.If f «(x *) and g « (x @) are two « -fractional power series,

ay — yeo __9n 1 a
f a(x ) = Y=o Pna+1) x M@ =y Pn=0" x ) ™y (r(a+1) e, (7)
®n
ay — es] b—n — o b?‘! a
g a(x ) =2Xn=o T(ra+1) X N = En:(‘)_( x )n! La+1) . (8) Then we define
fa@x®)® galx®)
=¥r0 x" Q@ Yoo r(n;+1) an b xna
I'na-+l)
o 1 n
= En:l] Mna+1) ( m=0 (m) nne. (9)
an-mb m) X
Equivalently,
fa(x®) @ galx®)
®n @n
=¥, In L x@ ® Y=o at . “
(=) ™ ) o
= Zn-() (Em U( ) n ! 0()®n . (10)
n! manfmbm)(l"(aﬂ)x
Definition 2.5 ([18]): Assume that 0 <a <1, and f «(x %), g «(x @) are a -fractional power series,
®n
« w 9n 1 @
f (x%) = Xn- Dr(na+1)xna— ":0_( x )n! I'(a+1) :(11)
®n
ay — =] b—n [e=] bn a
g a(x ) = B0 Tty g n e = Enzo_( x )n! r@+1) .(12) The compositions of f «(x *) and g «(x *) are
defined by

®n
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« « (f 0g ) =f (g x9) =% (g (x9) « a n-oni @ , (13)

and

®n
(g o@D =g (f x)) =% =(f @) L . .
n=0n1Q . (14)

Definition 2.6 ([19]): If 0 <a <1, and x is a real number. The a -fractional exponential function is defined by

na ®n
Ea(xa)= o == T2 Zn=0 = =0 ( : xa)l‘(naﬂ) nt re+y . (15)

And the a -fractional logarithmic function L n «(x ®) is the inverse function of E « (x @).
Definition 2.7 ([20]): The a -fractional cosine and sine function are defined respectively as follows:

n n ®2n
o (=1 na — 0 ﬂ 1 a
cosa(x®)= Zn=o xX*n = Ealo ( x )F(Zna-H) en) r@a+) ,(16)
and
Ssina(x*) =>Yn"0r—__@n(—+l)mae+nyx2n+a = dnow=0 (___ ____2(-—nl1+t)In)! (['(a 1+1)
xa)Q®@2n+1). (17)

1. EXAMPLES
In this section, we find the exact solutions of two fractional power series.

Example 3.1: Suppose that 0 < a < 1. Find the a -fractional power series

w (an)! (4n+1)
L=t [‘((4n+1)a+1)x a (18)

where o —l1< xe<land(___! xa)®<1.
I'(a+1)

yeo __Gmt L ane)
Solution <™= r(n+1na+1) a

®(4n+1)

—ye 1 ( 1 x“)
=1 4n+1 \[(a+1)

®4dn

= E?:l( fo) [([‘(alJrl} xa) ]
®R4dn

= ( Ulf) [E;Oﬂ (l"(aflﬂ) xa) ]
RX4Q4n

= ( n]f) [(F(a1+1) x a) ®Z:?:0( 1 xa) ]
I'a+1)
®4 ®4 ®-1
= ( 019‘6[) [(ﬁ x a) ® [1 - ([‘(a1+1) xa) ] ]
®4 @1
= (ol x) [=1+[1 = (Tt x @) 1]
®2 R-182 ®—1

— (o x®) [1 + 3 [1 + (F@D x @) | 43 -F@oxe) ] ]
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=12a) [[1 - - mjﬂ) - mjﬂ) (xa)®@2]®-1] + 1 ( Olxa) [[1 +
(x*)®2]1®—1] — (ol x*)[1]
(0Ix2 )
((1 + F(a1+i) 14«) — 03y . (I T — ve )®-1) +
arctana(x®) —x 2 .(19)
=Lnax [(a+1) 2
Example 3.2: Let 0 < ¢ < 1. Find the a -fractional power series

1
Yo x*
I'(4na+1)

" (20)
Solution Let y o (x @) =) n-or.

a a — (o] 1 n-—
(D) a (x 9] = - ttamarn S a ,(21)

@na'1x*na then the a -fractional derivatives of ¥ « (x @)

(oP8) Dalr N = Bies s ™™ P (22)

(oP8) DN = Zs e (23) (0P8) Dee N = B ¥ = Sty Y (24)
Therefore,

(0D x*) [y a(x *)] =y «(x *) =0, (25) and

Ya (0)=1, (oD x®)[y a(x “)](0) = (oD x*)*[y « (x )](0) = (oD x*)’[y « (x #)](0) = 0. (26)

This is a 4-th order linear « -fractional differential equation, and we can obtain the general solution is
YVa(x®)=C1Ea(x*)+C2oEa(—x%)+C3c0Sa(x®)+Casina(x®),(27)where C 1, C 2, C 3, C 4 are constants.

Using initial value conditions yields
C = C2=41, C3= 12, and C4=0. (28)

Thus,

1
Ya(x@)="4Ea(x®)+4_Ea(-x%)+2c05a(x9).(29)
That is,

o] 1 na_l a l — l
Z":Or(cmm—nx4 _45“(?[ )+4E“( x )+2 cosa(x).(30)

IV.  CONCLUSION

In this paper, we find the exact solutions of two fractional power series. Jumarie’s modified R-L fractional calculus

and a new multiplication of fractional power series play important roles in this article. In fact, our results are

generalizations of the results in traditional calculus. In the future, we will expand our research fields to

engineering mathematics and fractional differential equations.
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